【題目】數(shù)列中,,.
(1)求證:存在的一次函數(shù),使得成公比為2的等比數(shù)列;
(2)求的通項公式;
(3)令,求證:.
【答案】(1)證明見解析;(2);(3)證明見解析.
【解析】
(1)根據(jù)題意,設滿足條件,由于成公比為2的等比數(shù)列,根據(jù)等比數(shù)列的定義,得出,利用待定系數(shù)法求出和,即可得出結論;
(2)由(1)知是首項為,公比為2的等比數(shù)列,由等比數(shù)列的通項公式得出,即可求出的通項公式;
(3)先求出,要證,即證,根據(jù)放縮法得出,當時,,再利用裂項相消法求和,即可證明不等式.
解:(1)證明:設滿足條件,
由于成公比為2的等比數(shù)列,
則,
即,
由,得,
解得:,,,
存在,使成公比為2的等比數(shù)列.
(2)由(1)知是首項為,公比為2的等比數(shù)列,
則,.
(3)證明:,即,
要證,即證,
當時,,
,
即,
所以,
即.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)設函數(shù).當時,若函數(shù)在上為增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個單位有職工500人,其中不到35歲的有125人,35歲至50歲的有280人,50歲以上的有95人.為了了解這個單位職工與身體狀態(tài)有關的某項指標,要從中抽取100名職工作為樣本,應該怎樣抽取?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某省各景點在大眾中的熟知度,隨機對15~65歲的人群抽樣了人,回答問題“某省有哪幾個著名的旅游景點?”統(tǒng)計結果如下圖表
組號 | 分組 | 回答正確 的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第1組 | [15,25) | 0.5 | |
第2組 | [25,35) | 18 | |
第3組 | [35,45) | 0.9 | |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 |
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機抽取2人,求所抽取的人中恰好沒有第3組人的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班50位學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]
(Ⅰ)求圖中的值,并估計該班期中考試數(shù)學成績的眾數(shù);
(Ⅱ)從成績不低于90分的學生和成績低于50分的學生中隨機選取2人,求這2人成績均不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的離心率,左焦點為,右頂點為,過點的直線交橢圓于兩點,若直線垂直于軸時,有.
(1)求橢圓的方程;
(2)設直線: 上兩點, 關于軸對稱,直線與橢圓相交于點(異于點),直線與軸相交于點.若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)當a=0時,f(x)≥h(x)在(1,+∞)上恒成立,求實數(shù)m的取值范圍;
(2)當m=2時,若函數(shù)k(x)=f(x)-h(x)在區(qū)間(1,3)上恰有兩個不同零點,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com