【題目】數(shù)列中,.

1)求證:存在的一次函數(shù),使得成公比為2的等比數(shù)列;

2)求的通項公式;

3)令,求證:.

【答案】1)證明見解析;(2;(3)證明見解析.

【解析】

1)根據(jù)題意,設滿足條件,由于成公比為2的等比數(shù)列,根據(jù)等比數(shù)列的定義,得出,利用待定系數(shù)法求出,即可得出結論;

2)由(1)知是首項為,公比為2的等比數(shù)列,由等比數(shù)列的通項公式得出,即可求出的通項公式;

3)先求出,要證,即證,根據(jù)放縮法得出,當時,,再利用裂項相消法求和,即可證明不等式.

解:(1)證明:設滿足條件,

由于成公比為2的等比數(shù)列,

,

,

,得,

解得:,

存在,使成公比為2的等比數(shù)列.

2)由(1)知是首項為,公比為2的等比數(shù)列,

,.

3)證明:,即,

要證,即證

時,

,

,

所以,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調區(qū)間;

(2)設函數(shù).時,若函數(shù)上為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個單位有職工500人,其中不到35歲的有125人,35歲至50歲的有280人,50歲以上的有95人.為了了解這個單位職工與身體狀態(tài)有關的某項指標,要從中抽取100名職工作為樣本,應該怎樣抽取?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解某省各景點在大眾中的熟知度,隨機對15~65歲的人群抽樣了人,回答問題“某省有哪幾個著名的旅游景點?”統(tǒng)計結果如下圖表

組號

分組

回答正確

的人數(shù)

回答正確的人數(shù)

占本組的頻率

第1組

[15,25)

0.5

第2組

[25,35)

18

第3組

[35,45)

0.9

第4組

[45,55)

9

0.36

第5組

[55,65]

3

(1)分別求出的值;

(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?

(3)在(2)抽取的6人中隨機抽取2人,求所抽取的人中恰好沒有第3組人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班50位學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]

(Ⅰ)求圖中的值,并估計該班期中考試數(shù)學成績的眾數(shù);

(Ⅱ)從成績不低于90分的學生和成績低于50分的學生中隨機選取2人,求這2人成績均不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的離心率,左焦點為,右頂點為,過點的直線交橢圓于兩點,若直線垂直于軸時,有.

(1)求橢圓的方程;

(2)設直線 上兩點, 關于軸對稱,直線與橢圓相交于點異于點),直線軸相交于點.若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)x2mlnx,h(x)x2xa.

(1)a0時,f(x)h(x)(1,+∞)上恒成立,求實數(shù)m的取值范圍;

(2)m2時,若函數(shù)k(x)f(x)h(x)在區(qū)間(1,3)上恰有兩個不同零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若的極值點, 求函數(shù)的單調性;

(2)若時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1時,求上的單調區(qū)間;

2, 均恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案