15.已知cos(2α-β)=-$\frac{11}{14}$,sin(α-2β)=$\frac{4\sqrt{3}}{7}$,且$\frac{π}{4}$$<α<\frac{π}{2}$,0<β<$\frac{π}{4}$,求cos(α+β)的值.

分析 由條件根據(jù)角的范圍、利用同角三角函數(shù)的基本關(guān)系求得sin(2α-β)和cos(α-2β)的值,再利用兩角差的余弦公式求得cos(α+β)=cos[(2α-β)-(α-2β)]的值.

解答 解:∵$\frac{π}{4}$$<α<\frac{π}{2}$,0<β<$\frac{π}{4}$,∴2α-β∈($\frac{π}{4}$,π),α-2β∈(-$\frac{π}{4}$,$\frac{π}{2}$).
結(jié)合cos(2α-β)=-$\frac{11}{14}$,sin(α-2β)=$\frac{4\sqrt{3}}{7}$,可得sin(2α-β)=$\frac{5\sqrt{3}}{14}$,cos(α-2β)=$\frac{1}{7}$,
cos(α+β)=cos[(2α-β)-(α-2β)]
=cos(2α-β)cos(α-2β)+sin(α-2β)sin(2α-β)
=-$\frac{11}{14}$•$\frac{1}{7}$+$\frac{4\sqrt{3}}{7}$•$\frac{5\sqrt{3}}{14}$=$\frac{1}{2}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的余弦公式的應(yīng)用,注意角的變換,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.曲線y=xex在點(1,e)處的切線與直線ax+by+c=0垂直,則$\frac{a}$的值為( 。
A.$-\frac{1}{2e}$B.$-\frac{2}{e}$C.$\frac{2}{e}$D.$\frac{1}{2e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.Sn是等差數(shù)列{an}的前n項和,a3+a6+a12為一個常數(shù),則下列也是常數(shù)的是( 。
A.S17B.S15C.S13D.S7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若數(shù)列{an}為等比數(shù)列(公比q≠-1),Sn為前n項和,則Sn,S2n-Sn,S3n-S2n,…,仍構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x3+ax2+bx+c(a,b為常數(shù)),且有x=1的切線為y=$-\frac{1}{2}$.
(1)求f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.cos240°=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.函數(shù)f(x)=x3-ax2+bx.
(1)若f(x)在點(1,f(1))處的切線方程為2x-y=0,求a,b的值;
(2)若函數(shù)f(x)在x=1處取得極值,在x=2處切線斜率的取值范圍為(3,5),若存在x∈[4,6],使得f(x)≤32成立,求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知命題p:?x∈R,ax2+ax+1>0;命題q:?x∈R,x2-x+a=0.若p∧q是真命題,則a的取值范圍是( 。
A.(-∞,4)B.[0,4)C.(0,$\frac{1}{4}$]D.[0,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,a1b1=3,且對任意的n∈N+,都有a1b1+a2b2+a3b3+…+anbn=$\frac{(2n-1){3}^{n+1}+3}{4}$.
(Ⅰ)求數(shù)列{anbn}的通項公式;
(Ⅱ)若數(shù)列{bn}的首項為3,公比為3,設(shè)cn=bn+(-1)n-1λ•2an+1,且對任意的n∈N+,都有cn+1>cn成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案