13.已知$(1-\frac{1}{x}){(1+x)^5}$的展開式中x3項的系數(shù)為5.

分析 把(1+x)5 按照二項式定理展開,可得(1-$\frac{1}{x}$)(1+x)5展開式中含x3項的系數(shù).

解答 解:$(1-\frac{1}{x}){(1+x)^5}$=(1-$\frac{1}{x}$)(${C}_{5}^{0}$+${C}_{5}^{1}$•x+${C}_{5}^{2}$•x2+${C}_{5}^{3}$•x3+${C}_{5}^{4}$•x4+${C}_{5}^{5}$•x5),
所以展開式中含x3的項的系數(shù)為:
${C}_{5}^{3}$-${C}_{5}^{4}$=10-5=5.
故答案為:5.

點評 本題主要考查了二項式定理的應用問題,解題時應利用二項展開式的通項公式,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=(x2+ax+a)e-x,其中a∈R.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)若存在m,n∈(2,3),且m≠n,使得f(m)=f(n),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,過點F作與x軸垂直的直線l交兩漸近線于A、B兩點,且與雙曲線在第一象限的交點為P,設O為坐標原點,若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ,μ∈R),λ•μ=$\frac{9}{64}$,則該雙曲線的離心率為( 。
A.$\frac{4}{3}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{2}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在${({\frac{1}{x}+1})^3}{({x+2})^3}$的展開式中,常數(shù)項為(  )
A.36B.48C.63D.72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列說法正確的是( 。
A.底面是正多邊形,側面都是正三角形的棱錐是正棱錐
B.各個側面都是正方形的棱柱一定是正棱柱
C.對角面是全等的矩形的直棱柱是長方體
D.兩底面為相似多邊形,且其余各面均為梯形的多面體必為棱臺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知點A(-1,1)、B(1,2)、C(-2,1)、D(3,4),則向量$\overrightarrow{AD}$在$\overrightarrow{CB}$方向上的投影為( 。
A.$-\frac{{3\sqrt{5}}}{2}$B.$-\frac{{3\sqrt{15}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{3\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{3}$,離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設P是橢圓E上在第一象限內的點,如圖,點P關于原點O的對稱點為A,關于x軸的對稱點為Q,線段PQ與x軸交于點C,點D為線段CQ的中點,直線AD與橢圓E的另一個交點為B,證明:點P在以AB為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.用秦九韶算法求多項式f(x)=6x6+4x4+3x3+x當x=2的值得過程中,V3的值為59.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設α,β,γ是三個互不重合的平面,m,n是兩條不重合的直線,下列命題中正確的序號是④;
①若α⊥β,β⊥γ,則α⊥γ; 
②若m∥α,n∥β,α⊥β,則m⊥n;
③若α⊥β,m⊥α,則m∥β;
④若α∥β,m?β,m∥α,則m∥β.

查看答案和解析>>

同步練習冊答案