7.已知函數(shù)f(x)=(x2+ax+a)e-x,其中a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在m,n∈(2,3),且m≠n,使得f(m)=f(n),求實數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)結(jié)合(1)得到f(x)在(0,2-a)遞增,在(2-a,+∞)遞減,滿足條件,從而得到關(guān)于a的不等式,解出即可.

解答 解:(1)∵f(x)=(x2+ax+a)e-x
∴f′(x)=-$\frac{x[x+(a-2)]}{{e}^{x}}$,
①a-2>0即a>2時,2-a<0,
令f′(x)>0,解得:2-a<x<0,
令f′(x)<0,x>0或x<2-a,
∴f(x)在(-∞,2-a)遞減,在(2-a,0)遞增,在(0,+∞)遞減;
②a-2=0即a=2時,f′(x)=-$\frac{{x}^{2}}{{e}^{x}}$<0,f(x)在R遞減;
③a-2<0即a<2時,2-a>0,
令f′(x)>0,解得:0<x<2-a,
令f′(x)<0,x>2-a或x<0,
∴f(x)在(-∞,0)遞減,在(0,2-a,)遞增,在(2-a,+∞)遞減;
(2)由(1)得:2<2-a<3,解得:-1<a<0.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在等差數(shù)列{an}中,a1=1,a3=-3
(Ⅰ)求數(shù)列{an}的通項公式.
(Ⅱ)若數(shù)列{an}的前k項和Sk=-35,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.①某小區(qū)有4000人,其中少年人、中年人、老年人的比例為1:2:4,為了了解他們的體質(zhì)情況,要從中抽取一個容量為200的樣本;
②從全班45名同學(xué)中選2人參加某項活動.
Ⅰ.簡單隨機(jī)抽樣法;Ⅱ.系統(tǒng)抽樣法;Ⅲ.分層抽樣法.
問題與方法配對正確的是( 。
A.①Ⅲ,②ⅠB.①Ⅰ,②ⅡC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)命題p:對?x∈R+,ex>lnx,則¬p為( 。
A.?x0∈R+,e${\;}^{{x}_{0}}$<lnx0B.?x∈R+,e^x<lnx
C.?x0∈R+,e${\;}^{{x}_{0}}$≤lnx0D.?x∈R+,e^x≤lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C在直角坐標(biāo)系xOy下的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)).以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(Ⅱ)直線l的極坐標(biāo)方程是ρcos(θ-$\frac{π}{6}$)=3$\sqrt{3}$,射線OT:θ=$\frac{π}{3}$(ρ>0)與曲線C交于A點,與直線l交于B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={x|-4+a<x<4+a},B={x|<-1或x>5}.
(Ⅰ)若a=1,求出集合A和集合A∩B;
(Ⅱ)若A∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知α,β為銳角,cos(${\frac{π}{2}$-α)=$\frac{3}{5}$,sin(${\frac{3π}{2}$+β)=-$\frac{5}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)x∈R,集合A={3,x,x2-2x},若-2∈A,求實數(shù)x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知$(1-\frac{1}{x}){(1+x)^5}$的展開式中x3項的系數(shù)為5.

查看答案和解析>>

同步練習(xí)冊答案