在四邊形ABCD中,若
AC
=
AB
+
AD
,則四邊形ABCD一定是( 。
A、正方形B、菱形
C、矩形D、平行四邊形
考點:向量的加法及其幾何意義
專題:平面向量及應用
分析:根據(jù)題意,結合平面向量的三角形法則,求出AD∥BC,且AD=BC,得出四邊形ABCD是平行四邊形.
解答: 解:在四邊形ABCD中,
AC
=
AB
+
AD
,
AC
=
AB
+
.
BC
,
AD
=
BC

即AD∥BC,且AD=BC,如圖所示;
∴四邊形ABCD是平行四邊形.
故選:D.
點評:本題考查了平面向量的應用問題,解題時應結合圖形解答問題,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>0,b>0
)的右頂點為A,點M在橢圓上,且它的橫坐標為1,點B(0,
3
),且
AB
=2
AM

(1)求橢圓的方程;
(2)若過點A的直線l與橢圓交于另一點N,若線段AN的垂直平分線經(jīng)過點(
6
13
,0),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+4x-3在區(qū)間[0,2]上的最小值為-4,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
e1
,
e2
是平面上的一組基底,若
a
=
e1
+λ
e2
b
=-2λ
e1
-
e2

(1)若
a
b
共線,求λ的值;
(2)若
e1
,
e2
是夾角為60°的單位向量,當λ≥0時求
a
b
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項的和為Sn,且Sn=
1-an
2
(n∈N*),數(shù)列{bn}是公差d>0的等差數(shù)列,且b3、b5是方程x2-14x+45=0的兩根.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)記cn=anbn,求證:cn+1≤cn;
(Ⅲ)求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x>1時,xa-1<1,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
4
)(ω>0)的最小正周期為π,則f(
π
8
)=( 。
A、1
B、
1
2
C、-1
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},滿足an+1=
2ann為偶數(shù)
an+1,n為奇數(shù)
,a1=1,若bn=a2n-1+2(bn≠0).
(Ⅰ)求a4,并證明數(shù)列{bn}是等比數(shù)列;
(Ⅱ)令cn=n•a2n-1,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=4,|
b
|=3,
a
,
b
的夾角θ為60°,求:
(1)(
a
+2
b
)•(2
a
-
b
)的值;
(2)|2
a
-
b
|的值.

查看答案和解析>>

同步練習冊答案