14.已知{an}為等差數(shù)列,且a1+a3=8,a2+a4=12.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{a_n}{2^n}$,求數(shù)列{bn}的前n項(xiàng)和.

分析 (1)由已知條件可得$\left\{{\begin{array}{l}{2{a_1}+2d=8}\\{2{a_1}+4d=12}\end{array}}\right.$,解得a1,d,即可;
(2)由an=2n可得,${b_n}=\frac{a_n}{2^n}=\frac{n}{{{2^{n-1}}}}$,利用錯(cuò)位相減法數(shù)列{bn}的前n項(xiàng)和為Tn

解答 解:(1)由已知條件可得$\left\{{\begin{array}{l}{2{a_1}+2d=8}\\{2{a_1}+4d=12}\end{array}}\right.$,…(3分)
解之得a1=2,d=2,…(4分)
所以,an=2n.                                         …(6分)
(2)由an=2n可得,${b_n}=\frac{a_n}{2^n}=\frac{n}{{{2^{n-1}}}}$,設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn
則${T_n}=1+\frac{2}{2}+\frac{3}{2^2}+…+\frac{n}{{{2^{n-1}}}}$,…(7分)
∴$\frac{1}{2}{T_n}=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n}{2^n}$,…(9分)
以上二式相減得$\frac{1}{2}{T_n}=1+\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{{{2^{n-1}}}}-\frac{n}{2^n}$
=$2(1-\frac{1}{2^n})-\frac{n}{2^n}=2-\frac{n+2}{2^n}$,…(11分)
所以,${T_n}=4-\frac{n+2}{{{2^{n-1}}}}$.…(12分)

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式,錯(cuò)位相減法求和,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(m,n-1)與$\overrightarrow$=(2,-1)平行,則$\sqrt{{m}^{2}+{n}^{2}}$的最小值為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在半徑為2cm的圓中,有一條弧長為$\frac{π}{3}$ cm,它所對(duì)的圓心角為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.工商局對(duì)超市某種食品抽查,這種食品每箱裝有6袋,經(jīng)檢測,某箱中每袋的重量(單位:克)如以下莖葉圖所示.則這箱食品一袋的平均重量和重量的中位數(shù)分別為(  )
A.249,248B.249,249C.248,249D.248,249

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為120°,AB,AC的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價(jià)為每平方米150元,AQ段圍墻造價(jià)為每平方米100元.若圍圍墻用了30000元,問如何圍可使竹籬笆用料最省?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知向量$\overrightarrow{AP}=({1,\sqrt{3}}),\overrightarrow{PB}=({-\sqrt{3},1})$,則向量$\overrightarrow{AP}$與$\overrightarrow{AB}$的夾角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在△ABC中,D是邊BC上一點(diǎn),$\overrightarrow{BD}=2\overrightarrow{DC},|{\overrightarrow{AD}}$|=1.
(1)用$\overrightarrow{AB},\overrightarrow{AD}$表示$\overrightarrow{AC}$;
(2)若$\overrightarrow{AB}•\overrightarrow{BD}+{\overrightarrow{AB}^2}$=0,求$\overrightarrow{AD}•\overrightarrow{AC}$的值;
(3)若AB=3,cos∠BAC=-$\frac{1}{3}$,求$|{\overrightarrow{BC}}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知a=3,b=5,c=7,則△ABC的面積為$\frac{15\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.一組數(shù)據(jù)1,3,2,5,4的方差是2.

查看答案和解析>>

同步練習(xí)冊答案