19.在曲線xy=1上,橫坐標(biāo)為$\frac{n}{n+1}$的點(diǎn)為An,縱坐標(biāo)為$\frac{n}{n+1}$的點(diǎn)為Bn,記坐標(biāo)為(1,1)的點(diǎn)為M,Pn(xn,yn)是△AnBnM的外心,Tn是{xn}的前n項(xiàng)和,則Tn=$\frac{4{n}^{2}+5n}{2n+2}$.

分析 由已知可得An$(\frac{n}{n+1},\frac{n+1}{n})$,Bn$(\frac{n+1}{n},\frac{n}{n+1})$,則線段AnBn的垂直平分線為y=x.可得線段AnM的垂直平分線為:$y-\frac{2n+1}{2n}$=$\frac{n}{n+1}(x-\frac{2n+1}{2n+2})$,把y=x代入解得xn.再利用“裂項(xiàng)求和”即可得出.

解答 解:由已知可得An$(\frac{n}{n+1},\frac{n+1}{n})$,Bn$(\frac{n+1}{n},\frac{n}{n+1})$,則線段AnBn的垂直平分線為y=x.
線段AnM的垂直平分線為:$y-\frac{2n+1}{2n}$=$\frac{n}{n+1}(x-\frac{2n+1}{2n+2})$,
把y=x代入解得xn=2+$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$.
∴{xn}的前n項(xiàng)和Tn=2n+$\frac{1}{2}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=2n+$\frac{1}{2}(1-\frac{1}{n+1})$=2n+$\frac{n}{2n+2}$=$\frac{4{n}^{2}+5n}{2n+2}$.
故答案為:$\frac{4{n}^{2}+5n}{2n+2}$.

點(diǎn)評 本題考查了線段的垂直平分線及其性質(zhì)、三角形的外心、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在正方體ABCD-A1B1C1D1中,E、F分別是BC1,DC的中點(diǎn).
(1)求直線DE與平面ABCD所成角的正切值;
(2)求證:AF⊥DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若一個(gè)函數(shù)存在定義域和值域相同的區(qū)間,則稱這個(gè)函數(shù)為這個(gè)區(qū)間上的一個(gè)“保城函數(shù)”,給出下列四個(gè)函數(shù):
①f(x)=-x3;
②f(x)=3x
③f(x)=sin$\frac{πx}{3}$;
④f(x)=2ln3x-3.
其中可以找到一個(gè)區(qū)間使其為保城函數(shù)的有( 。
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“$\frac{{a}^{2}+^{2}}{ab}$≤-2”是“a<0且b>0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.?ABCD中,OA=4,OC=2,|$\overrightarrow{OB}$|=2$\sqrt{7}$,M為OA的中點(diǎn),P為線段BC上一動點(diǎn)(包括端點(diǎn)).
(1)求∠ABC;
(2)是否存在實(shí)數(shù)λ,使(λ$\overrightarrow{OA}$-$\overrightarrow{OP}$)⊥$\overrightarrow{CM}$?若存在,求出滿足條件的實(shí)數(shù)λ的取值范圍,不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=4cos($\frac{πx}{2}$+$\frac{π}{3}$),如果對于任意x∈R都有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow$|=4,($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{c}$)=0,若對每一個(gè)確定的$\overrightarrow b$,|$\overrightarrow{c}$|的最大值和最小值分別為m,n,則m-n的值為(  )
A.隨$|\overrightarrow a|$增大而增大B.隨$|\overrightarrow a|$增大而減小C.是2D.是4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知公差不為零的等差數(shù)列{an}的前4項(xiàng)和為10,且a2,a3,a7成等比數(shù)列.
(Ⅰ)求通項(xiàng)公式an;
(Ⅱ)設(shè)bn=$\frac{{a}_{n}+5}{3}$2${\;}^{{a}_{n}+2}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=$\frac{4}{3}$an-$\frac{1}{3}×$2n+1+$\frac{2}{3}$,n∈N*
(Ⅰ)求證數(shù)列{an+2n}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)設(shè)T(n)=$\frac{{2}^{n}}{{S}_{n}}$,n∈N*,證明:$\sum_{i=1}^{n}$T(i)<$\frac{3}{2}$;
(Ⅲ)設(shè)R(n)=$\sum_{i=1}^{n}$$\frac{1}{i}$,n≥2,證明:$\frac{n}{2}$<R($\frac{{a}_{n}}{{2}^{n}}$)<n.

查看答案和解析>>

同步練習(xí)冊答案