7.如圖正方形ABCD的邊長為ABCD的邊長為$2\sqrt{2}$,四邊形BDEF是平行四邊形,BD與AC交于點(diǎn)G,O為GC的中點(diǎn),$FO=\sqrt{3},且FO⊥$平面ABCD.
(I)求證:AE∥平面BCF;
(Ⅱ)若$FO=\sqrt{3}$,求證CF⊥平面AEF.

分析 (I)利用正方形,平行四邊形的性質(zhì)可得AD∥BC,DE∥BF,可證平面ADE∥平面BCF,即可證明AE∥平面BCF…5分
(Ⅱ)由已知可證AC2=AF2+CF2,由勾股定理可得CF⊥AF,又FO⊥平面ABCD,可得FO⊥BD,又AC⊥BD,即可證明BD⊥平面AFC,結(jié)合EF∥BD,即可證明EF⊥CF,從而可證CF⊥平面AEF.

解答 證明:(I)∵四邊形ABCD為正方形,四邊形BDEF是平行四邊形,
∴AD∥BC,DE∥BF,
∵AD∩DE=D,BC∩BF=B,
∴平面ADE∥平面BCF,
又∵AE?平面ADE,
∴AE∥平面BCF…5分
(Ⅱ)∵正方形ABCD邊長為2$\sqrt{2}$,
∴對(duì)角線AC=4,
又∵O為GC中點(diǎn),
∴AO=3,OC=1
又∵FO⊥平面ABCD,且FO=$\sqrt{3}$,
∴AF2=AO2+OF2=9+3=12,CF2=OC2+OF2=1+3=4,
又AC2=16,
∴AC2=AF2+CF2
∴CF⊥AF,
又FO⊥平面ABCD,BD?平面ABCD,
∴FO⊥BD
又∵AC⊥BD
∴BD⊥平面AFC,
又∵EF∥BD,
∴EF⊥平面AFC
∴EF⊥CF,
又EF∩AF=F
∴CF⊥平面AEF…12分

點(diǎn)評(píng) 本題主要考查了直線與平面垂直的判定,直線與平面平行的判定,考查了空間想象能力和推理論證能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,S-ABCD是正四棱錐,已知底面邊長AB=6cm,側(cè)棱SA=3$\sqrt{5}$cm,求該正四棱錐的側(cè)面SAB的斜高SE和底面AC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點(diǎn),沿直線BD將△BCD翻折成△BC′D,使得平面BC′D⊥平面ABD.
(Ⅰ)求證:平面DEC′⊥平面ABD;
(Ⅱ)求直線BD與平面BEC′所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一個(gè)圓錐的側(cè)面展開圖是圓心角為$\frac{4}{3}π$,半徑為18的扇形,則這個(gè)圓錐的體積為$288\sqrt{5}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.?dāng)?shù)列{an}的首項(xiàng)為3,{bn}為等差數(shù)列,且bn=an+1-an(n∈N*).若則b2=-4,b5=2,則a8=( 。
A.0B.3C.8D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列各組函數(shù)f(x)與g(x)的圖象相同的是( 。
A.f(x)=x,g(x)=($\sqrt{x}$)2B.$f(x)=\frac{{{x^2}-4}}{x-2}$與g(x)=x+2
C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,(x≥0)}\\{-x,(x<0)}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若{1,a,$\frac{a}$}={0,a2,a+b},則a2015+b2015的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:x2-x-2>0,q:|x|<a,若¬p是q的必要而不充分條件,則實(shí)數(shù)a的取值范圍是( 。
A.a<1B.a≤1C.a<2D.a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,已知向量$\overrightarrow a$=(2,0),$\overrightarrow b$=(0,1).設(shè)向量$\overrightarrow x=\overrightarrow a+({1+cosθ})\overrightarrow b$,$\overrightarrow y=-k\overrightarrow a+{sin^2}$$θ•\overrightarrow b$,其中0<θ<$\frac{π}{2}$.
(1)若$\overrightarrow x$∥$\overrightarrow y$,且θ=$\frac{π}{3}$,求實(shí)數(shù)k的值;
(2)若$\overrightarrow x$⊥$\overrightarrow y$,求實(shí)數(shù)k的最大值,并求取最大值時(shí)cosθ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案