5.已知奇函數(shù)F(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-\frac{4}{3},(x>0)}\\{f(x),(x<0)}\end{array}\right.$,則F(f(log2$\frac{1}{3}$))=( 。
A.-$\frac{5}{6}$B.$\frac{5}{6}$C.($\frac{1}{2}$)${\;}^{\frac{13}{3}}$D.($\frac{1}{2}$)${\;}^{\frac{1}{3}}$-$\frac{4}{3}$

分析 根據(jù)函數(shù)F(x)的奇偶性求出f(x),再依次計(jì)算f(log2$\frac{1}{3}$),F(xiàn)(f(log2$\frac{1}{3}$)).

解答 解:當(dāng)x<0時(shí),-x>0.
∵F(x)是奇函數(shù),
∴F(x)=-F(-x)=-($\frac{1}{2}$)-x+$\frac{4}{3}$,
即f(x)=-($\frac{1}{2}$)-x+$\frac{4}{3}$.
即F(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-\frac{4}{3},x>0}\\{-(\frac{1}{2})^{-x}+\frac{4}{3},x<0}\end{array}\right.$.
∴f(log2$\frac{1}{3}$)=-$\frac{1}{3}$+$\frac{4}{3}$=1.
∴F(f(log2$\frac{1}{3}$))=F(1)=$\frac{1}{2}-\frac{4}{3}=-\frac{5}{6}$.
故選A.

點(diǎn)評(píng) 本題考查了函數(shù)奇偶性的性質(zhì),分段函數(shù)求值,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.根據(jù)下列條件,求角α的指定的三角函數(shù)值:
(1)已知sin$α=-\frac{\sqrt{3}}{2}$,且α是第三象限角,求cosα和tanα;
(2)已知tanα=-3,且α是第二象限角,求sinα和cosα;
(3)已知cos$α=\frac{12}{13}$,且α是第四象限角,求sinα和tanα;
(4)已知sin$α=-\frac{1}{2}$,α∈R,求cosα和tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知全集U={1,2,3,4,5},集合A=(1,2,5},∁UB=(1,3,5},則A∩B=( 。
A.{2}B.{5}C.{1,2,4,5}D.{3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=sin2x在[-π,π]內(nèi)滿足$\frac{{f({x_1})}}{x_1}=\frac{{f({x_2})}}{x_2}=…\frac{{f({x_n})}}{x_n}$的n的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}}\right.$,則z=x-3y的取值范圍是[-4,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={0,1,2},B={x|x2-x-2<0},則A∩B=( 。
A.{0,1,2}B.{1,2}C.{0,1}D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{$\frac{{S}_{n}}{n}$}是首項(xiàng)為0,公差為$\frac{1}{2}$的等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{4}{15}$•(-2)${\;}^{{a}_{n}}$(n∈N*),對(duì)任意的正整數(shù)k,將集合{b2k-1,b2k,b2k+1}中的三個(gè)元素排成一個(gè)遞增的等差數(shù)列,其公差為dk,求證:數(shù)列{dk}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)y=cosx與y=sin(2x+φ)(0≤φ≤π),它們的圖象有一個(gè)橫坐標(biāo)為$\frac{π}{3}$的交點(diǎn),則φ的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.某貨運(yùn)員擬運(yùn)送甲、乙兩種貨物,每件貨物的體積、重量、可獲利潤(rùn)以及運(yùn)輸限制如表:
貨物體積(升/件)重量(公斤/件)利潤(rùn)(元/件)
20108
102010
運(yùn)輸限制110100
在最合理的安排下,獲得的最大利潤(rùn)的值為62.

查看答案和解析>>

同步練習(xí)冊(cè)答案