15.某貨運員擬運送甲、乙兩種貨物,每件貨物的體積、重量、可獲利潤以及運輸限制如表:
貨物體積(升/件)重量(公斤/件)利潤(元/件)
20108
102010
運輸限制110100
在最合理的安排下,獲得的最大利潤的值為62.

分析 運送甲x件,乙y件,利潤為z,建立約束條件和目標函數(shù),利用線性規(guī)劃的知識進行求解即可.

解答 解:設(shè)運送甲x件,乙y件,利潤為z,
則由題意得$\left\{\begin{array}{l}{20x+10y≤110}\\{10x+20y≤100}\\{x,y∈N}\end{array}\right.$,即$\left\{\begin{array}{l}{2x+y≤11}\\{x+2y≤10}\\{x,y∈N}\end{array}\right.$,且z=8x+10y
作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=8x+10y得y=-$\frac{4}{5}$x+$\frac{z}{10}$,
平移直線y=-$\frac{4}{5}$x+$\frac{z}{10}$,由圖象知當直線y=-$\frac{4}{5}$x+$\frac{z}{10}$經(jīng)過點B時,直線的截距最大,此時z最大,
由$\left\{\begin{array}{l}{2x+y=11}\\{x+2y=10}\end{array}\right.$,得$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$,即B(4,3),
此時z=8×4+10×3=32+30=62,
故答案為:62

點評 本題主要考查線性規(guī)劃的應(yīng)用,設(shè)出變量,建立約束條件和目標函數(shù),作出圖象,利用線性規(guī)劃的知識進行求解是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知奇函數(shù)F(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-\frac{4}{3},(x>0)}\\{f(x),(x<0)}\end{array}\right.$,則F(f(log2$\frac{1}{3}$))=( 。
A.-$\frac{5}{6}$B.$\frac{5}{6}$C.($\frac{1}{2}$)${\;}^{\frac{13}{3}}$D.($\frac{1}{2}$)${\;}^{\frac{1}{3}}$-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.有三個房間需要粉刷,粉刷方案要求:每個房間只用一種顏色,且三個房間顏色各不相同.三個房間的粉刷面積和三種顏色的涂料費用如表:
 房間A房間B  房間C
 35m2 20m2 28m2
 涂料1涂料2 涂料3
 16元/m2 18元/m2 20元/m2
那么在所有不同的粉刷方案中,最低的涂料總費用是1464元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖是計算$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+…+\frac{1}{512}$的值的一個程序框圖,其中判斷框內(nèi)可以填的是(  )
A.n≥12?B.n≥11?C.n≥10?D.n≥9?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,若輸入的M的值為55,則輸出的i的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的前n項和為Sn,且Sn=n2+2n;數(shù)列{bn}是公比大于1的等比數(shù)列,且滿足b1+b4=9,b2b3=8.
(Ⅰ)分別求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若cn=(-1)nSn+anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖所示,當輸入a,b分別為2,3時,最后輸出的M的值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,輸出c的結(jié)果為( 。
A.13B.21C.17D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知復(fù)數(shù)ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i(i為虛數(shù)單位).
(1)求ω2及ω2+ω+1的值;
(2)若等比數(shù)列{an}的首項a1=1,公比q=ω,求數(shù)列{an}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案