14.已知,對于任意x∈R,ex≥ax+b均成立.
①若a=e,則b的最大值為0;
②在所有符合題意的a,b中,a-b的最小值為-$\frac{1}{e}$.

分析 ①若a=e,可得b≤ex-ex恒成立,由y=ex-ex求出導(dǎo)數(shù)和單調(diào)區(qū)間,可得最小值,即可得到b的最大值;
②對于任意x∈R,ex≥ax+b均成立,即有b≤ex-ax恒成立,由y=ex-ax求出導(dǎo)數(shù)和單調(diào)區(qū)間,可得b≤a-alna,
即a-b≥alna,由f(a)=alna求出導(dǎo)數(shù)和單調(diào)區(qū)間,可得最小值,即可得到a-b的最小值.

解答 解:①若a=e,則對于任意x∈R,ex≥ex+b均成立,
即為b≤ex-ex恒成立,
由y=ex-ex的導(dǎo)數(shù)為y′=ex-e,
當(dāng)x>1時(shí),y′>0,函數(shù)y遞增;當(dāng)x<1時(shí),y′<0,函數(shù)y遞減.
可得x=1處,函數(shù)y取得最小值,且為0,
則b≤0,即b的最大值為0;
②對于任意x∈R,ex≥ax+b均成立,
即有b≤ex-ax恒成立,
由y=ex-ax的導(dǎo)數(shù)為y′=ex-a,
當(dāng)a≤0時(shí),y′>0恒成立,函數(shù)y遞增,無最小值;
當(dāng)a>0時(shí),當(dāng)x>lna時(shí),y′>0,函數(shù)y遞增;當(dāng)x<lna時(shí),y′<0,函數(shù)y遞減.
可得x=lna處,函數(shù)y取得最小值,且為a-alna,
則b≤a-alna,
即a-b≥alna,
由f(a)=alna的導(dǎo)數(shù)為f′(a)=lna+1,
可得a>$\frac{1}{e}$時(shí),f′(a)>0,f(a)遞增;
0<a<$\frac{1}{e}$時(shí),f′(a)<0,f(a)遞減.
可得a=$\frac{1}{e}$時(shí),f(a)取得最小值-$\frac{1}{e}$.
則a-b的最小值為-$\frac{1}{e}$.
故答案為:0,-$\frac{1}{e}$.

點(diǎn)評 本題考查不等式恒成立問題的解法,注意運(yùn)用參數(shù)分離和構(gòu)造函數(shù)法,考查轉(zhuǎn)化思想和分類討論思想方法,以及運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)滿足當(dāng)x∈(1,2)時(shí),f(x-1)=2f($\frac{1}{x-1}$),當(dāng)x∈(1,3]時(shí),f(x)=lnx,若函數(shù)g(x)=$\frac{f(x)-ax}{x-1}$在區(qū)間[$\frac{1}{3}$,1)∪(1,3]上有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.(0,$\frac{1}{,e}$)B.[$\frac{ln3}{3}$,$\frac{1}{,e}$)C.($\frac{ln3}{3}$,$\frac{1}{,e}$)D.(0,$\frac{ln3}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的取值范圍;
(3)解關(guān)于x的不等式  (k+1)f(x)>kx+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知兩個(gè)平面垂直,下列命題:
①一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面內(nèi)的任意一條直線.
②一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面內(nèi)的無數(shù)條直線.
③一個(gè)平面內(nèi)的任一條直線必垂直于另一個(gè)平面.
④一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直.
其中正確命題的個(gè)數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,曲線C1的方程為(x-2)2+y2=4.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2,射線C3的極坐標(biāo)方程為$θ=\frac{π}{4}(ρ>0)$.
(1)將曲線C1的直角坐標(biāo)方程化為極坐標(biāo)方程;
(2)若射線C3與曲線C1、C2分別交于點(diǎn)A、B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在平面直角坐標(biāo)系xOy中,以(-2,0)為圓心且與直線mx+2y-2m-6=0(m∈R)相切的所有圓中,面積最大的圓的標(biāo)準(zhǔn)方程是( 。
A.(x+2)2+y2=16B.(x+2)2+y2=20C.(x+2)2+y2=25D.(x+2)2+y2=36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知ω>0,0<φ<π,直線x=$\frac{π}{4}$和x=$\frac{5π}{4}$是函數(shù)f(x)=sin(ωx+φ)圖象的兩條相鄰的對稱軸,則
(1)求f(x)的解析式;
(2)設(shè)h(x)=f(x)+$\sqrt{3}cos(x+\frac{π}{4}),當(dāng)x∈[{0,π}]時(shí),求h(x)的單調(diào)減區(qū)間$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知實(shí)數(shù)a1,a2,b1,b2,b3滿足數(shù)列1,a1,a2,9是等差數(shù)列,數(shù)列1,b1,b2,b3,9是等比數(shù)列,則$\frac{_{2}}{{a}_{1}+{a}_{2}}$的值為(  )
A.±$\frac{3}{10}$B.$\frac{3}{10}$C.-$\frac{3}{10}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知圓C:(x-1)2+(y-a)2=16,若直線ax+y-2=0與圓C相交于AB兩點(diǎn),且CA⊥CB,則實(shí)數(shù)a的值是-1.

查看答案和解析>>

同步練習(xí)冊答案