函數(shù)y=sin(
1
2
x+
π
3
),x∈[-π,
π
2
]的單調(diào)遞增區(qū)間為
 
考點(diǎn):正弦函數(shù)的單調(diào)性
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:由x∈[-π,
π
2
]⇒
1
2
x+
π
3
∈[-
π
6
,
12
],利用y=sinx在[-
π
6
π
2
]上單調(diào)遞增,即可求得答案.
解答: 解:∵x∈[-π,
π
2
],
1
2
x+
π
3
∈[-
π
6
,
12
],
∵y=sinx在[-
π
6
,
π
2
]上單調(diào)遞增,
∴-
π
6
1
2
x+
π
3
π
2
,
解得-π≤x≤
π
3

∴當(dāng)x∈[-π,
π
2
]時(shí),y=sin(
1
2
x+
π
3
)的單調(diào)遞增區(qū)間為[-π,
π
3
],
故答案為:[-π,
π
3
].
點(diǎn)評(píng):本題考查正弦函數(shù)的單調(diào)性,求得
1
2
x+
π
3
∈[-
π
6
,
12
]是基礎(chǔ),利用y=sinx在[-
π
6
,
π
2
]上單調(diào)遞增解決是關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若曲線y=x2-1的一條切線平行于直線y=4x-3,求這條切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=2sinx•cosx-2
3
cos2x+
3

(1)求f(
π
4
)的值;
(2)若f(α)=
10
13
,且α[
π
2
,π],求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2+2|x-a|.
(Ⅰ)若函數(shù)y=f(x)為偶函數(shù),求a的值;
(Ⅱ)若a=
1
2
,求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)a>0時(shí),若對(duì)任意的x∈[0,+∞),不等式f(x-1)≥2f(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,以橢圓C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求
TM
TN
的最小值,并求此時(shí)圓T的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓心角為
π
3
弧度,半徑為6的扇形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直角坐標(biāo)平面上4個(gè)點(diǎn)A(1,2),B(3,1),C(2,3),D(4,0)到直線y=kx的距離的平方和為S,當(dāng)k變化,S的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)點(diǎn)P(x,y)(x≥0)到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離差為1,則點(diǎn)P的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知
AC
BC
=12,
AC
BA
=-4則AC=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案