1.若α為銳角,3sinα=tanα,則cos(α-$\frac{π}{4}$)=$\frac{4+\sqrt{2}}{6}$.

分析 由題意和同角三角函數(shù)基本關(guān)系可得sinα和cosα,代入兩角差的余弦公式計(jì)算可得.

解答 解:∵α為銳角,∴sinα>0,
又∵3sinα=tanα,∴3sinα=$\frac{sinα}{cosα}$,
∴約掉sinα可得cosα=$\frac{1}{3}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{2\sqrt{2}}{3}$,
∴cos(α-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$cosα+$\frac{\sqrt{2}}{2}$sinα
=$\frac{\sqrt{2}}{2}$×$\frac{1}{3}$+$\frac{\sqrt{2}}{2}$×$\frac{2\sqrt{2}}{3}$=$\frac{4+\sqrt{2}}{6}$.
故答案為:$\frac{4+\sqrt{2}}{6}$.

點(diǎn)評(píng) 本題考查兩角和與差的余弦公式和同角三角函數(shù)基本關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.給出下列隨機(jī)變量:
①?gòu)V州白云機(jī)場(chǎng)侯機(jī)室中一天的旅客數(shù)量X;
②高要某氣象站觀察到一天中高要的氣溫X;
③深圳歡樂(lè)谷一日接待游客的數(shù)量X;
④西江大橋一天經(jīng)過(guò)的車(chē)輛數(shù)X.
其中是離散型隨機(jī)變量的為(  )
A.①②③④B.①②④C.①④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知x、y滿(mǎn)足不等式組$\left\{\begin{array}{l}{x≥0}\\{x-y≤0}\\{4x+3y≤14}\end{array}\right.$,設(shè)(x+2)2+(y+1)2的最小值為ω,則函數(shù)f(t)=sin(ωt+$\frac{π}{6}$)的最小正周期為$\frac{2π}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知平行四邊形ABCD中.∠BAD=120°,AB=1,AD=2,點(diǎn)P是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),則$\overrightarrow{AP}$•$\overrightarrow{DP}$的取值范圍是[-$\frac{1}{4}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)F,離心率e,過(guò)點(diǎn)F斜率為1的直線(xiàn)交雙曲線(xiàn)的漸近線(xiàn)于A、B兩點(diǎn),AB中點(diǎn)為M,若|FM|等于半焦距,則e2等于( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{3}$或$\sqrt{2}$D.3-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AA1=AB=2,BC=1,$∠BAC=\frac{π}{6}$,D為棱AA1中點(diǎn),證明異面直線(xiàn)B1C1與CD所成角為$\frac{π}{2}$,并求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.焦點(diǎn)在x軸上,焦距為10,且與雙曲線(xiàn)$\frac{{y}^{2}}{4}$-x2=1有相同漸近線(xiàn)的雙曲線(xiàn)的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.雙曲線(xiàn)C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與直線(xiàn)y=x交于不同的兩點(diǎn),則雙曲線(xiàn)C的離心率的取值范圍是(  )
A.(1,$\sqrt{2}$)∪($\sqrt{2}$,+∞)B.($\sqrt{2}$,+∞)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,四棱錐P-ABCD的底面ABCD為平行四邊形,NB=2PN,則三棱錐N-PAC與四棱錐P-ABCD的體積比為( 。
A.1:2B.1:3C.1:6D.1:8

查看答案和解析>>

同步練習(xí)冊(cè)答案