10.焦點(diǎn)在x軸上,焦距為10,且與雙曲線$\frac{{y}^{2}}{4}$-x2=1有相同漸近線的雙曲線的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.

分析 設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),由題意可得2c=10,即c=5,求出已知雙曲線的漸近線方程,可得a,b的方程組,解得a,b,即可得到所求雙曲線的標(biāo)準(zhǔn)方程.

解答 解:設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),
由題意可得2c=10,即c=5,
由雙曲線$\frac{{y}^{2}}{4}$-x2=1的漸近線方程為y=±2x,
可得$\frac{a}$=2,又a2+b2=25,
解得a=$\sqrt{5}$,b=2$\sqrt{5}$,
即有雙曲線的方程為$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.
故答案為:$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.

點(diǎn)評(píng) 本題考查雙曲線的方程的求法,注意運(yùn)用漸近線方程和a,b,c的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)f(x)=$\frac{{x}^{2}-3x+4}{x}$,g(x)=mx+2,若對(duì)任意的x1∈[1,3],總存在x2∈[1,3],使得f(x2)<g(x1),則實(shí)數(shù)m的取值范圍是(-$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)y=sin(x+$\frac{π}{4}$)圖象的一條對(duì)稱軸是(  )
A.x軸B.y軸C.直線x=$\frac{π}{4}$D.直線x=-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若α為銳角,3sinα=tanα,則cos(α-$\frac{π}{4}$)=$\frac{4+\sqrt{2}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖1,在矩形ABCD中,AB=$\sqrt{3}$,BC=4,E是邊AD上一點(diǎn),且AE=3,把△ABE沿BE翻折,使得點(diǎn)A到A′,滿足平面A′BE與平面BCDE垂直(如圖2),連結(jié)A′C,A′D.
(1)求四棱錐A′-BCDE的體積;
(2)在棱A′C是否存在點(diǎn)R,使得DR∥平面A′BE?若存在,請(qǐng)求出$\frac{A′R}{CR}$的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直線A1B上.
(Ⅰ)求證:BC⊥A1B;
(Ⅱ)若P是線段AC上一點(diǎn),$AD=\sqrt{3}$,AB=BC=2,三棱錐A1-PBC的體積為$\frac{{\sqrt{3}}}{3}$,求$\frac{AP}{PC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知雙曲線C:x2+2my2=1的兩條漸近線互相垂直,則拋物線E:y=mx2的焦點(diǎn)坐標(biāo)是( 。
A.(0,1)B.(0,-1)C.(0,$\frac{1}{2}$)D.(0,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為2x-y=0,則它的離心率為(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}-ax-a,x∈R$,其中a>0.
(1)當(dāng)a=2時(shí),求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案