在直三棱柱中,

 
(1)求證:

(2)求二面角的大;

(3)求點

(1)∵平面是正方形,∴

       又∵

 
       ∴由三垂線定理得:                     ………………4分

(2)過點C做

       過點

       ∴

       在直角△ABC中,CH=,

       在直角△中,

       ∴在Rt△CHD中,

       ∴二面角         ………………8分

   (3)∵A1C1⊥平面ACB1,

       ∴點.

       設(shè),則 …………12分


解析:

同答案

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱中,∠ACB=90°,AC=BC=1,側(cè)棱AA1=
2
,M為A1B1的中點,則AM與平面AA1C1C所成角的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•江蘇二模)在直三棱柱中,AC⊥BC,AC=4,BC=CC1=2,若用平行于三棱柱A1B1C1-ABC的某一側(cè)面的平面去截此三棱柱,使得到的兩個幾何體能夠拼接成長方體,則長方體表面積的最小 值為
24
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年湖北卷理)(本小題滿分12分)

如圖,在直三棱柱中,平面側(cè)面

(Ⅰ)求證:

(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ的大小關(guān)系,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年十校聯(lián)考) (12分) 在直三棱柱中,

(1)求證:

(2)求二面角的大小;

(3)求點

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆黑龍江省高二上學(xué)期期末理科數(shù)學(xué)試卷 題型:解答題

如圖,在直三棱柱中,,,,點 是的中點,點在側(cè)棱上,且

(1)求二面角的大;

(2)求點到平面的距離.

 

 

 

查看答案和解析>>

同步練習(xí)冊答案