14.在△ABC中,a:b:c=3:5:7,則此三角形中最大角為120°.

分析 由a:b:c的比值,設(shè)一份為k,表示出a,b及c,利用余弦定理表示出cosC,將表示出的a,b及c代入求出cosC的值,由C為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出C的度數(shù),即為此三角形中最大角的度數(shù).

解答 解:在△ABC中,∵a:b:c=3:5:7,即a=3k,b=5k,c=7k,
∴由余弦定理得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{(9+25-49){k}^{2}}{30{k}^{2}}$=-$\frac{1}{2}$,
又C為三角形的內(nèi)角,
則此三角形中最大角C的度數(shù)是120°.
故答案為:120°.

點(diǎn)評(píng) 此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.給出下列命題
①在空間,過(guò)直線外一點(diǎn),作這條直線的平行線只能有一條.
②既不平行,又不相交的兩條不同直線是異面直線
③兩兩互相平行的三條直線確定一個(gè)平面
④不可能在同一平面的兩線是異面直線
其中正確命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且asinB+bcosA=0.
(1)求角A的大;
(2)若$a=2\sqrt{5},b=2$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=lnx,g(x)=ex
(1)確定方程f(x)=$\frac{x+1}{x-1}$實(shí)數(shù)根的個(gè)數(shù);
(2)我們把與兩條曲線都相切的直線叫作這兩條曲線的公切線,試確定曲線y=f(x),y=g(x)公切線的條數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)g(x)=x3+$\frac{5}{2}{x^2}$+3lnx+b(b∈R)在x=1處的切線過(guò)點(diǎn)(0,-5),則b=( 。
A.$\frac{7}{2}$B.$\frac{5}{2}$C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,已知邊長(zhǎng)為6的菱形ABCD,∠ABC=120°,AC與BD相交于O,將菱形ABCD沿對(duì)角線AC折起,使BD=3$\sqrt{2}$.

(1)若M是BC的中點(diǎn),求證:在三棱錐D-ABC中,直線OM與平面ABD平行;
(2)求二面角A-BD-O的余弦值;
(3)在三棱錐D-ABC中,設(shè)點(diǎn)N是BD上的一個(gè)動(dòng)點(diǎn),試確定N點(diǎn)的位置,使得CN=4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若空間中的三個(gè)點(diǎn)A(1,5,-2),B(2,4,1),C(a,3,b+2)共線,則a+b=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,a=2$\sqrt{3}$m,b=4m(m>0),如果三角形有解,則A的取值范圍是( 。
A.0°<A≤60°B.0°<A<30°C.0°<A<90°D.30°<A<60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知A,B為圓C:(x-a)2+(y-b)2=9(a,b∈R)上的兩個(gè)不同的點(diǎn),且滿足|$\overrightarrow{CA}$+$\overrightarrow{CB}$|=2$\sqrt{2}$,則|$\overrightarrow{AB}$|=( 。
A.1B.$\sqrt{7}$C.2D.2$\sqrt{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案