已知圓心為O的圓內(nèi)有一條弦BC,其長(zhǎng)為2,動(dòng)點(diǎn)為A,在圓上運(yùn)動(dòng),且∠BAC=45°,若∠ABC為銳角,則
OA
BC
的取值范圍是
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì),平面向量及應(yīng)用
分析:首先建立恰當(dāng)?shù)闹苯亲鴺?biāo)系,根據(jù)直角坐標(biāo)系確定各點(diǎn)的坐標(biāo),進(jìn)一步利用向量的數(shù)量積轉(zhuǎn)化成利用定義域求三角函數(shù)的值域.
解答: 解:如圖所示:|BC|=2,∠BOC=90°,∠CAB=45°,
由于∠B為銳角,則:點(diǎn)A只能在左半圓上,
故設(shè):A(
2
cosθ,
2
sinθ
)(
π
2
<θ<
2

B(
2
,0),C(0,
2
),
OA
=(
2
cosθ,
2
sinθ
),
BC
=(-
2
2
),
所以:
OA
BC
=-2cosθ+2sinθ=2
2
sin(θ-
π
4

由于
π
2
<θ<
2
,
所以:-
2
2
<sin(θ-
π
4
)≤1,
則:-2<
OA
BC
≤2
2

故答案為:(-2,2
2
].
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):向量的數(shù)量積,三角函數(shù)的恒等變換,利用正弦型函數(shù)的定義域求值域.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓C1:(x-4)2+(y-5)2=4和圓C2:(x+3)2+(y-1)2=4.
(1)若直線l1過(guò)點(diǎn)A(2,0),且與圓C1相切,求直線l1的方程;
(2)直線l2的方程是x=
5
2
,證明:直線l2上存在點(diǎn)P,滿足過(guò)P的無(wú)窮多對(duì)互相垂直的直線l3和l4,它們分別與圓C1和圓C2相交,且直線l3被圓C1截得的弦長(zhǎng)與直線l4被圓C2截得的弦長(zhǎng)相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一輛車要通過(guò)某十字路口,直行時(shí)前方剛好由綠燈轉(zhuǎn)為紅燈.該車前面已有4輛車依次在同一車道上排隊(duì)等候(該車道只可以直行或左轉(zhuǎn)行駛).已知每輛車直行的概率為
2
3
,左轉(zhuǎn)行駛的概率
1
3
.該路口紅綠燈轉(zhuǎn)換隔均為1分鐘.假設(shè)該車道上一輛直行的車駛出停車線需要10秒,一輛左轉(zhuǎn)行駛的車駛出停車線需要20秒.求:
(1)前面4輛車恰有2輛左轉(zhuǎn)行駛的概率為多少?
(2)該車在第一次綠燈亮起的1分鐘內(nèi)能通過(guò)該十字路口的概率(汽車駛出停車線就算通過(guò)路口);
(3)假設(shè)每次由紅燈轉(zhuǎn)為綠燈的瞬間,所有排隊(duì)等候的車輛都同時(shí)向前行駛,求該車在這十字路口停車等候的時(shí)間的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)A和B兩種產(chǎn)品,已知制造產(chǎn)品A1kg,要用煤9t,電力4kw,勞動(dòng)力3個(gè),能創(chuàng)造經(jīng)濟(jì)價(jià)值7萬(wàn)元;制造產(chǎn)品B1kg,要用煤4t,電力5kw,勞動(dòng)力10個(gè),能創(chuàng)造經(jīng)濟(jì)價(jià)值12萬(wàn)元,現(xiàn)在該工廠有煤360t,電力200kw,勞動(dòng)力300個(gè),問(wèn)在這種限制條件下,應(yīng)生產(chǎn)產(chǎn)品A、B各多少千克,才能使所創(chuàng)造的總的經(jīng)濟(jì)價(jià)值最高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某個(gè)幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是
8000
3
 cm3,則正視圖中的h等于
 
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
OA
=(1,1),
OB
=(1,a),其中O為坐標(biāo)原點(diǎn),若向量
OA
OB
的夾角在區(qū)間[0,
π
12
]內(nèi)變化,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

畫出不等式x+2y≤-2所表示的平面區(qū)域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線(3λ+1)x+(1-λ)y+6-6λ=0與不等式組
x+y-7<0
x-3y+1<0
3x-y-5>0
表示的平面區(qū)域有公共點(diǎn),則實(shí)數(shù)λ的取值范圍是( 。
A、(-∞,-
13
7
)∪(9,+∞)
B、,(-
13
7
,1)∪(9,+∞)
C、(1,9)
D、(-∞,-
13
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用輾轉(zhuǎn)相除法求80和36的最大公約數(shù),并用更相減損術(shù)檢驗(yàn)所得結(jié)果.

查看答案和解析>>

同步練習(xí)冊(cè)答案