6.正四面體A-BCD,M是棱AB的中點(diǎn),則CM與面BCD所成的角的正弦值是$\frac{\sqrt{2}}{3}$.

分析 在正四面體ABCD中,過A作AO⊥平面BCD于點(diǎn)O,則O為底面正三角形BCD的外心,連接BO,過M作MF∥AO,交OD于F,則∠MCF=α,就是CM與平面BCD所成角,解直角三角形CMF即可.

解答 解:設(shè)正四面體ABCD的邊長為a,高為AO
則O為底面正三角形BCD的外心,過M作MF∥AO,交OD于F,
則MF⊥平面BCD,
則設(shè)∠MCF=α,即為CM與平面BCD所成角,
在Rt△ABO中,則BO=$\frac{\sqrt{3}}{3}$a,AO=$\frac{\sqrt{6}}{3}$a,MF=$\frac{1}{2}$AO=$\frac{\sqrt{6}}{6}$a,
∴sinα=$\frac{\sqrt{2}}{3}$.
故答案為:$\frac{\sqrt{2}}{3}$.

點(diǎn)評 考查直線和平面所成的角,關(guān)鍵是找到斜線在平面內(nèi)的射影,把空間角轉(zhuǎn)化為平面角求解,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,在長方體ABCD-A1B1C1D1中,AA1=AD=2AB=2,若E,F(xiàn)分別為線段A1D1,CC1的中點(diǎn),則直線EF與平面ADD1A1所成角的正弦值為( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C的中心是坐標(biāo)原點(diǎn)O,長軸在x軸上,且經(jīng)過點(diǎn)$(1,\frac{3}{2})$.C上任意一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為4.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知M,N是橢圓上的兩點(diǎn),且OM⊥ON,求證:$\frac{1}{{{{|{OM}|}^2}}}+\frac{1}{{{{|{ON}|}^2}}}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.一個(gè)四面體的頂點(diǎn)在空間直角坐標(biāo)系O-xyz中的坐標(biāo)分別是(1,0,1),(1,1,0),(0,1,0),(1,1,1),則該四面體的外接球的體積為$\frac{\sqrt{3}}{2}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在四棱錐P-ABCD中,底面ABCD為菱形,且PA⊥BD,∠BAD=60°,AB=2
(1)證明:PD=PB;
(2)當(dāng)PD⊥PB,二面角A-PB-C的余弦值為$\frac{-5}{7}$時(shí),求此錐體的高?
(3)在條件(2)下,研究在線段PB上是否存在點(diǎn)M,使得異面直線PA與DM成角的余弦值等于$\frac{\sqrt{26}}{52}$,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在底面是直角梯形的四棱錐S-ABCD中,∠ABC=90°,AD∥BC,SA⊥平面ABCD,SA=AB=BC=1,AD=$\frac{1}{2}$
(1)求四棱錐S-ABCD的體積;
(2)求證:平面SAB⊥平面SBC;
(3)求直線SC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,正四棱錐P-ABCD的頂點(diǎn)都在同一球面上,已知ABCD中心為E,球心O在線段PE上,QA⊥底面ABCD,且與球面交于點(diǎn)Q,若球的半徑為2.
(Ⅰ)若OE=1,求二面角B-PQ-D的平面角的余弦值;
(Ⅱ)若△QBD是等邊三角形,求四棱錐P-ABCD和Q-ABCD公共部分的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求二面角B-AE-C的正切值;
(Ⅲ)求直線EC與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,D是AB的中點(diǎn),CD=5,AB=12,則$\overrightarrow{CA}$•$\overrightarrow{CB}$=-11.

查看答案和解析>>

同步練習(xí)冊答案