15.如圖,直二面角D-AB-E中,四邊形ABCD是邊長(zhǎng)為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求二面角B-AE-C的正切值;
(Ⅲ)求直線EC與平面ABCD所成角的正切值.

分析 (Ⅰ)由線面垂直得到線線垂直,再由二面角的平面角是直角得到線線垂直,再由線面垂直的判定得答案;
(Ⅱ)由(Ⅰ)知角BEC就是二面角B-AE-C的平面角,然后通過解直角三角形得答案;
(Ⅲ)取AB的中點(diǎn)O,連接EO,CO,則可證明角ECO就是直線EC與平面ABCD所成角.然后通過解直角三角形得答案.

解答 (Ⅰ)證明:∵BF⊥平面ACE.∴BF⊥AE.
∵二面角D-AB-E為直二面角,且CB⊥AB,∴CB⊥平面ABE.
∴CB⊥AE.
則AE⊥平面BCE;
(Ⅱ)解:由(Ⅰ)知角BEC就是二面角B-AE-C的平面角,
由AE⊥平面BCE,得AE⊥BE,
又AE=EB,AB=2,∴BE=$\sqrt{2}$,
則$tan∠BEC=\frac{2}{\sqrt{2}}=\sqrt{2}$;
(Ⅲ)解:取AB的中點(diǎn)O,連接EO,CO,
∵AE=EB,∴EO⊥AB,
則EO⊥平面ABCD,
∴角ECO就是直線EC與平面ABCD所成角.
EO=1,CO=$\sqrt{{2}^{2}+{1}^{1}}=\sqrt{5}$.
∴$tan∠ECO=\frac{EO}{CO}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}$.

點(diǎn)評(píng) 本題考查線面角及二面角的求法,考查空間直線和平面的位置關(guān)系,考查了學(xué)生的空間想象能力和思維能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.存在對(duì)稱中心的曲線叫做有心曲線.顯然圓、橢圓和雙曲線都是有心曲線.若有心曲線上兩點(diǎn)的連線段過中心,則該線段叫做有心曲線的直徑.
(1)已知點(diǎn)$P({1,\frac{1}{2}})$,求使△PAB面積為$\frac{{\sqrt{7}}}{2}$時(shí),橢圓$\frac{x^2}{3}+{y^2}$=1的直徑AB所在的直線方程;
(2)若過橢圓$\frac{x^2}{3}+{y^2}$=1的中心作斜率為k的直線交橢圓于M,N兩點(diǎn),且橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,若以M為圓心,|MF2|長(zhǎng)度為半徑作⊙M,問是否存在定圓⊙R,使得⊙M恒與⊙R相切?若存在,求出⊙R的方程.若不存在,請(qǐng)說明理由.
(3)定理:若過圓x2+y2=1的一條直徑的兩個(gè)端點(diǎn)與圓上任意一點(diǎn)(不同于直徑兩端點(diǎn))的連線所在直線的斜率均存在,那么此兩斜率之積為定值-1.請(qǐng)對(duì)上述定理進(jìn)行推廣.說明:第(3)題將根據(jù)結(jié)論的一般性程度給與不同的評(píng)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.正四面體A-BCD,M是棱AB的中點(diǎn),則CM與面BCD所成的角的正弦值是$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,AB是⊙O的直徑,PA垂直于⊙O所在平面,C是圓周上部同于A、B的一點(diǎn),且AB=2,PA=BC=1
(1)求證:平面PAC⊥平面PBC;
(2)求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖三棱柱ABC-A1B1C1中,底面ABC⊥側(cè)面AA1C1C,△AA1C是正三角形,AB⊥BC且AB=BC.又三棱錐A-A1BC的體積是$\frac{9\sqrt{3}}{8}$.
(1)證明:AC⊥A1B;
(2)求直線BC和面ABA1所成角的正弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在四棱錐PABCD中,四邊形ABCD為平行四邊形,且BC⊥平面PAB,PA⊥AB,M為PB的中點(diǎn),PA=AD=2.若AB=1,則二面角BACM的余弦值為( 。
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{2}}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.將邊長(zhǎng)為2的正方形ABCD(O是正方形ABCD的中心)沿對(duì)角線AC折起,使得半平面ACD與半平面ABC成θ(0°<θ<180°)的兩面角,在折起后形成的三棱錐D-ABC中,給出下列三個(gè)命題:
①不論θ取何值,總有AC⊥BD;
②當(dāng)θ=90°時(shí),△BCD是等邊三角形;
③當(dāng)θ=60°時(shí),三棱錐D-ABC的體積是$\frac{\sqrt{6}}{3}$.
其中正確的命題的序號(hào)是①②③.(把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-1(x>0),設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N*
(1)用xn表示xn+1
(2)求證:xn+1≤xn對(duì)一切正整數(shù)n都成立的充要條件為x1≥1.
(3)x1=2,求證:$\frac{1}{{x}_{1}+1}$+$\frac{1}{{x}_{2}+1}$+…$\frac{1}{{x}_{n}+1}$≤$\frac{{2}^{n}-1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若x,y都是銳角,且sinx=$\frac{\sqrt{5}}{5}$,tany=$\frac{1}{3}$,則x+y=$\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案