分析 欲求所圍成的三角形的面積,先求出在點(1,2)處的切線方程,只須求出其斜率的值即可,故要利用導數(shù)求出在x=1處的導函數(shù)值,再結合導數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
解答 解:∵y=x3+x
∴y'=3x2+1,
當x=1時,y'=4得切線的斜率為4,所以k=4;
所以曲線在點(1,2)處的切線方程為:
y-2=4×(x-1),即4x-y-2=0.
令y=0得:x=$\frac{1}{2}$,令x=2時,y=6
∴切線與x軸、直線x=2所圍成的三角形的面積為:
S=$\frac{1}{2}$×(2-$\frac{1}{2}$)×6=$\frac{9}{2}$
故答案為:$\frac{9}{2}$
點評 本小題主要考查直線的斜率、導數(shù)的幾何意義、利用導數(shù)研究曲線上某點切線方程等基礎知識,考查運算求解能力.屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 37 3n2-3n+1 | B. | 38 3n2-3n+2 | C. | 36 3n2-3n | D. | 35 3n2-3n-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f′(x)=f(x)+2 | B. | f′(x)=f(x) | C. | f′(x)=3f(x) | D. | f′(x)=2f(x) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充分必要條件 | D. | 即不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 16 | C. | 32 | D. | 64 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com