分析 (1)根據一元二次不等式與對應方程的關系,利用根與系數的關系求出b、c的值即可;
(2)不等式f(x)+t≤2恒成立,轉化為t≤-2x2+2x+2恒成立,求出g(x)=-2x2+2x+2在x∈[-1,1]的最小值即可.
解答 解:(1)∵f(x)=2x2+bx+c,且不等式f(x)<0的解集是(0,1),
∴方程2x2+bx+c=0的兩個實數根為0和1,
∴$\left\{\begin{array}{l}{0+1=-\frac{2}}\\{0×1=\frac{c}{2}}\end{array}\right.$,
解得b=-2,c=0,
∴f(x)=2x2-2x;
(2)對于任意x∈[-1,1],不等式f(x)+t≤2恒成立,
即2x2-2x+t≤2恒成立,
∴t≤-2x2+2x+2;
設g(x)=-2x2+2x+2,x∈[-1,1],
∴g(x)=-2${(x-\frac{1}{2})}^{2}$+$\frac{5}{2}$,
當x=-1時,g(x)取得最小值為-2×(-1)2+2×(-1)+2=-2,
∴實數t的取值范圍是t≤-2.
點評 本題考查了一元二次不等式與對應方程的關系,也考查了不等式恒成立的問題,考查了轉化思想的應用問題,是基礎題目.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -6 | B. | 10 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=sin(4x+$\frac{π}{3}$) | B. | y=sin(2x+$\frac{2π}{3}$) | C. | y=sin(2x+$\frac{π}{3}$) | D. | y=sin(4x+$\frac{2π}{3}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 192 | B. | 228 | C. | 300 | D. | 180 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com