13.已知命題p:“?x0∈R,sinx0<m”,命題q:.?x∈R,x2+mx+1>0恒成立.若p∧q是真命題,求實(shí)數(shù)m的取值范圍.

分析 分別求出p,q為真時(shí)的m的范圍,取交集即可.

解答 解:關(guān)于命題p:“?x0∈R,sinx0<m”
則m>-1,
關(guān)于命題q:.?x∈R,x2+mx+1>0恒成立
則△=b2-4<0,解得:-2<m<2,
若p∧q是真命題,
則-1<m<2.

點(diǎn)評(píng) 本題考查了復(fù)合命題的判斷,考查三角函數(shù)、二次函數(shù)問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列命題中,命題的否定是假命題的是( 。
A.?x∈R,x2<x+1B.?x∈R,x2≥x+1
C.?x∈R,?y∈R,xy2=y2D.?x∈R,?y∈R,x>y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知集合A={x|x<-1或x≥1},B={x|x≤2a或x≥a+1},若(∁RB)⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.水平放置的△ABC,若其BC邊與x軸平行,BC=a,其直觀圖△A′B′C′是以B′C′為斜邊的等腰直角三角形,則△ABC的面積為$\frac{\sqrt{2}}{2}$a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=1g[(1-a2)x2+3(1-a)x+6]值域?yàn)镽,則實(shí)數(shù)a的取值范圍是( 。
A.(-1,0)B.(-1,-$\frac{5}{11}$)C.[-1,-$\frac{5}{11}$)D.[-1,-$\frac{5}{11}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知x,y都是實(shí)數(shù),試比較x2+y2+1與2(x+y-1)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若直線(xiàn)y=3x-1與直線(xiàn)x+ay+6=0平行,則實(shí)數(shù)a=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=a-$\frac{2}{x}$,若不等式f(x)<x在區(qū)間[c,+∞)(c為正常數(shù))上恒成立,則實(shí)數(shù)a的取值范圍為$\left\{\begin{array}{l}{a<2\sqrt{2}\\;0<c<\sqrt{2}}\\{a<c+\frac{2}{c}\\;c≥\sqrt{2}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知$\overrightarrow{a}$、$\overrightarrow$是不共線(xiàn)的向量,$\overrightarrow{AB}$=λ$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{AC}$=$\overrightarrow{a}$+μ$\overrightarrow$(λ、μ∈R),當(dāng)A、B、C三點(diǎn)共線(xiàn)時(shí),λ的取值不可能為( 。
A.1B.0C.-1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案