分析 分m≤0和m>0分別畫出函數(shù)y=f(x)的圖象,把函數(shù)y=f(x)-t有4個(gè)不同的零點(diǎn)轉(zhuǎn)化為函數(shù)y=f(x)的圖象與y=t有4個(gè)不同交點(diǎn)列關(guān)于m的不等式組求解.
解答 解:當(dāng)m≤0時(shí),函數(shù)$f(x)=\left\{\begin{array}{l}|x|,x≤\frac{m}{2}\\{x^2}-2mx+4m,x>\frac{m}{2}\end{array}\right.({m∈R})$的圖象如圖:
不滿足題意;
當(dāng)m>0時(shí),函數(shù)$f(x)=\left\{\begin{array}{l}|x|,x≤\frac{m}{2}\\{x^2}-2mx+4m,x>\frac{m}{2}\end{array}\right.({m∈R})$的圖象如圖:
要使函數(shù)y=f(x)-t有4個(gè)不同的零點(diǎn),
則函數(shù)y=f(x)的圖象與y=t有4個(gè)不同交點(diǎn),
∴$\left\{\begin{array}{l}{4m-\frac{3}{4}{m}^{2}>0}\\{4m-{m}^{2}<\frac{m}{2}}\end{array}\right.$,解得$\frac{7}{2}<m<\frac{16}{3}$.
∴m的取值范圍為:($\frac{7}{2},\frac{16}{3}$).
故答案為:($\frac{7}{2},\frac{16}{3}$).
點(diǎn)評(píng) 本題考查根的存在性與根的個(gè)數(shù)判斷,考查數(shù)形結(jié)合的解題思想方法,正確畫出函數(shù)圖象是解答該題的關(guān)鍵,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | $\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\sqrt{2}$ | B. | -$\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 55個(gè) | B. | 89個(gè) | C. | 144個(gè) | D. | 233個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{8}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若x0為函數(shù)y=f(x)的駐點(diǎn),則x0必為函數(shù)y=f(x)的極值點(diǎn) | |
B. | 函數(shù)y=f(x)導(dǎo)數(shù)不存在的點(diǎn),一定不是函數(shù)y=f(x)的極值點(diǎn) | |
C. | 若函數(shù)y=f(x)在x0處取得極值,且f′(x0)存在,則必有f′(x0)=0 | |
D. | 若函數(shù)y=f(x)在x0處連續(xù),則f′(x0)一定存在 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com