10.如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)E為正方形ABCD的兩條對角線的交點(diǎn),點(diǎn)F是棱AB的中點(diǎn),則異面直線AC1與EF所成角的正切值為(  )
A.-$\sqrt{2}$B.-$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

分析 推導(dǎo)出EF∥AD,從而∠DAC1是異面直線AC1與EF所成角(或所成角的補(bǔ)角),由此能求出異面直線AC1與EF所成角的正切值.

解答 解:∵在正方體ABCD-A1B1C1D1中,點(diǎn)E為正方形ABCD的兩條對角線的交點(diǎn),點(diǎn)F是棱AB的中點(diǎn),
∴EF∥AD,
∴∠DAC1是異面直線AC1與EF所成角(或所成角的補(bǔ)角),
設(shè)正方體ABCD-A1B1C1D1中棱長為a,
則DC1=$\sqrt{2}a$,AD=a,
∴tan∠DAC1=$\frac{D{C}_{1}}{DA}$=$\frac{\sqrt{2}a}{a}$=$\sqrt{2}$.
∴異面直線AC1與EF所成角的正切值為$\sqrt{2}$.
故選:D.

點(diǎn)評 本題考查異面直線所成角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.己知圓C:x2+y2=4,直線l:x+y=b(b∈R),若圓C上到直線l的距離為1的點(diǎn)的個數(shù)為S,則S的可能取值共有
( 。
A.2種B.3種C.4種D.5種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中,值域?yàn)椋?,+∞)的是( 。
A.y=2${\;}^{\frac{1}{x}}$B.y=lg(x2+1)C.y=$\sqrt{(\frac{1}{2})^{x}-1}$D.y=($\frac{1}{5}$)2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某校高二年級有男生105人,女生126人,教師42人,用分層抽樣的方法從中抽取13人,進(jìn)行問卷調(diào)查,設(shè)其中某項(xiàng)問題的選擇支為“同意”,“不同意”兩種,且每人都做了一種選擇,下面表格中提供了被調(diào)查人答卷情況的部分信息.
 同意 不同意  合計(jì)
 教師 1  
 女生  4 
 男生  2 
(1)請完成此統(tǒng)計(jì)表;
(2)試估計(jì)高二年級學(xué)生“同意”的人數(shù);
(3)從被調(diào)查的女生中選取2人進(jìn)行訪談,求選到的兩名學(xué)生中,恰有一人“同意”一人“不同意”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=a12=45,數(shù)列{bn}的通項(xiàng)公式bn=(-1)nan
(I)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn表達(dá)式;
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}|x|,x≤\frac{m}{2}\\{x^2}-2mx+4m,x>\frac{m}{2}\end{array}\right.({m∈R})$,若存在實(shí)數(shù)t,使得函數(shù)y=f(x)-t有4個不同的零點(diǎn),則m的取值范圍為($\frac{7}{2},\frac{16}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.定義在R上單調(diào)遞減函數(shù)f(x),對任意m,n都有f(m+n)=f(m)+f(n),g(x)=2(x-x2
(Ⅰ)判斷函數(shù)f(x)的奇偶性,并證明之
(Ⅱ)若對任意t∈[-1,4],不等式f(g(t)-1)+f(8t+m)<0(m為實(shí)常數(shù))都成立,求m的取值范圍
(Ⅲ)設(shè)F1(x)=-f(x)+x,F(xiàn)2(x)=g(x),F(xiàn)3(x)=$\frac{1}{3}$sin2πx,bi=$\frac{i}{100}$(i=0,1,2,…100),f(1)=-1,若Mk=|Fk(b1)-Fk(b0)|+|Fk(b2)-Fk(b1)|+…+|Fk(b100)-Fk(b99)|,(k=1,2,3),比較M1,M2,M3的大小并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知集合M滿足{1,2}⊆M⊆{1,2,3,4,5},則集合M的個數(shù)為8個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若a,b,c∈R,命題p:a<10,命題q:lg a<1,則p是q的( 。
A.充分必要B.充分不必要
C.必要不充分D.既不充分又不必要

查看答案和解析>>

同步練習(xí)冊答案