已知橢圓
x2
9
+
y2
5
=1的左、右焦點(diǎn)分別為F1、F2,P是橢圓上的一點(diǎn),且∠F1PF2=60°,則△PF1F2的面積是
 
考點(diǎn):橢圓的簡單性質(zhì)
專題:計算題,解三角形,圓錐曲線的定義、性質(zhì)與方程
分析:依題意,在△F1PF2中,∠F1PF2=60°,|F1P|+|PF2|=2a=6,|F1F2|=4,利用余弦定理可求得|F1P|•|PF2|的值,從而可求得△PF1F2的面積.
解答: 解:∵橢圓的方程為
x2
9
+
y2
5
=1,
∴a=3,b=
5
,c=2.
又∵P為橢圓上一點(diǎn),∠F1PF2=60°,F(xiàn)1、F2為左、右焦點(diǎn),
∴|F1P|+|PF2|=2a=6,|F1F2|=4,
∴|F1F2|2=(|PF1|+|PF2|)2-2|F1P|•|PF2|-2|F1P|•|PF2|cos60°
=36-3|F1P|•|PF2|=16,
∴|F1P|•|PF2|=
20
3

S△PF1F2=
1
2
|F1P|•|PF2|sin60°
=
1
2
×
20
3
×
3
2
=
5
3
3

故答案為:
5
3
3
點(diǎn)評:本題考查橢圓的簡單性質(zhì),考查余弦定理的應(yīng)用與三角形的面積公式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的頂點(diǎn)O作互相垂直的兩弦OM,ON,則M的橫坐標(biāo)x1與N的橫坐標(biāo)x2之積為( 。
A、64B、32C、16D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2cos(-3x+
π
4
)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC=3,BC=2,∠ABC的平分線交BC的平行線于點(diǎn)D,則△ABD的面積為( 。
A、3
2
B、
9
2
C、3
3
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)動點(diǎn)P(x,y)到定點(diǎn)F(1,0)的距離比它到y(tǒng)軸的距離大l.
(1)求動點(diǎn)P的軌跡ABCD的方程;
(2)已知點(diǎn)A(3,2),求|PA|+|PF|的最小值及此時P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△OAB中,已知P為線段AB上一點(diǎn),
OP
=x
OA
+y
OB
,
BP
PA
(λ為實(shí)數(shù)),OA=4,OB=2,∠AOB=60°
(1)當(dāng)λ=1時,求x,y的值;
(2)當(dāng)λ=3時,求
OP
AB
的值;
(3)當(dāng)2≤λ≤3時,求
OP
AB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=2n-1,n=1,2,3,…,那么數(shù)列{an}( 。
A、是等差數(shù)列但不是等比數(shù)列
B、是等比數(shù)列但不是等差數(shù)列
C、既是等差數(shù)列又是等比數(shù)列
D、既不是等差數(shù)列也不是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin( α+
π
6
)=
1
3
,且α∈(0,π),則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,這個二次函數(shù)的方程為
 

查看答案和解析>>

同步練習(xí)冊答案