已知函數(shù)f(x)=x2+(k-3)x+2-k.
(1)證明:函數(shù)f(x)至少有一個(gè)零點(diǎn);
(2)對(duì)任意k∈[-1,1],f(x)恒大于零,求x的取值范圍.
考點(diǎn):函數(shù)零點(diǎn)的判定定理,二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)令f(x)=0,得到判別式大于等于0,從而得到結(jié)論;(2)令g(k)=(x-1)k+x2-3x+2,通過討論x的范圍,得到不等式組,解出即可.
解答: 證明:(1)令x2+(k-3)x+2-k=0,
∵△=(k-1)2≥0,
∴函數(shù)f(x)至少有一個(gè)零點(diǎn).                        
(2)令g(k)=(x-1)k+x2-3x+2,
當(dāng)x=1時(shí),g(k)=0,不滿足條件,舍去,
當(dāng)x≠1時(shí),由題意得
g(-1)>0
g(1)>0

x2-4x+3>0
x2-2x+1>0
,
解得:x>3或x<1,
綜上所述:滿足條件的x的取值范圍為:{x|x>3或x<1}.
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)問題,考查了二次函數(shù)的性質(zhì),是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的偽代碼,若使這個(gè)算法執(zhí)行的是-1+3-5+7-9的計(jì)算結(jié)果,則a的初始值x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,0,-2},B={0,2,4},則A∩B=( 。
A、{1,-2}
B、{0,2}
C、{0,1,2,4,-2}
D、{1,-2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,其中俯視圖是邊長為2的正三角形,側(cè)視圖是直角三角形,則此幾何體的體積為(  )
A、
16
3
B、
10
3
C、8
3
D、
8
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A1B1C1D1中,底面ABCD為正方形,E,F(xiàn)分別為棱AD、,AB的中點(diǎn).
(Ⅰ)求證:EF∥平面C1BD;
(Ⅱ)求證:平面CAA1C1⊥平面C1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△AOB的頂點(diǎn)均在拋物線y2=2px(p>O)上,其中O為坐標(biāo)原點(diǎn),若△AOB的垂心恰好是拋物線的焦點(diǎn),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式
x+a
x+b
-
x+c
x+d
>0的解集為(-∞,-2)∪(1,2),則關(guān)于x的不等式
alnx-1
blnx-1
-
clnx-1
dlnx-1
>0的解集為( 。
A、(-1,-
1
2
)∪(0,
1
2
B、(
1
e
,
1
e
)∪(1,
e
C、(-∞,-
1
2
)∪(
1
2
,1)
D、(-∞,
1
e
)∪(
e
,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2為橢圓
x2
16
+
y2
15
=1的左、右焦點(diǎn),點(diǎn)A(-2,1),若點(diǎn)P是橢圓上的一個(gè)動(dòng)點(diǎn),則|PF1|+|PA|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
3
x2-4x+7
,x∈R,求函數(shù)值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案