已知函數(shù)f(x)是R上的偶函數(shù),且f(x+1)•f(x-1)=1,f(x)>0恒成立,則f(2011)=( 。
A、-1B、0C、1D、2
考點(diǎn):抽象函數(shù)及其應(yīng)用,函數(shù)的值
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)f(x+1)•f(x-1)=1,f(x)>0恒成立解出函數(shù)的周期為4及f(1)=f(-1)=1,再由周期性得出f(2011)=f(-1)即可求出f(2011)的值
解答: 解:由f(x+1)•f(x-1)=1知,函數(shù)自變量相差2,函數(shù)值互為倒數(shù),故函數(shù)周期是4
再令x=0可得f(1)•f(-1)=1,又f(x)>0恒成立
所以f(1)=f(-1)=1
∵2011=503×4-1
∴f(2011)=f(-1)=1
故選:C.
點(diǎn)評(píng):本題考查函數(shù)奇偶性的性質(zhì),解題的關(guān)鍵是充分利用恒等式求出函數(shù)的周期以及某些函數(shù)值,利用題設(shè)中的恒等式求出函數(shù)的周期及通過(guò)賦值求出f(-1)=1是解題的難點(diǎn).本題考查了觀(guān)察分析的能力及靈活變形的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)y=x+1被橢圓x2+2y2=4所截得的線(xiàn)段的中點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(ωx+ϕ) (其中ω>0,|ϕ|<
π
2
)的圖象的相鄰兩條對(duì)稱(chēng)軸間的距離是
π
2
,且f(0)=
3
,則ω和ϕ的值分別是( 。
A、2,
π
3
B、2,
π
6
C、4,
π
6
D、4,
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2
x
2
×log
2
x
2
,其中x∈[
1
2
,8].
(1)求f(x)的最大值和最小值;
(2)若實(shí)數(shù)a滿(mǎn)足:f(x)-a≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

今年3月1日,重慶某中學(xué)50位學(xué)生參加了“北約聯(lián)盟”的自主招生考試.這50位同學(xué)的數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[60,70),[70,80),[80,90),[90,100),[100,110),[110,120].
(Ⅰ)求圖中a的值;
(Ⅱ)從成績(jī)不低于100分的學(xué)生中隨機(jī)選取2人,該2人中成績(jī)?cè)?10分以上(含110分)的人數(shù)記為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知單位向量
a
=(x,y),
b
=(2,-1),若
a
b
,則|2x+y|的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖均是邊長(zhǎng)為2的等邊三角形,則該幾何體的表面積是(  )
A、
4
7
3
B、4+4
3
C、12
D、
4
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有關(guān)數(shù)列的表達(dá):
①數(shù)列若用圖象表示,從圖象上看是一群孤立的點(diǎn);
②數(shù)列的項(xiàng)是有限的;
③若一個(gè)數(shù)列是遞減的,則這個(gè)數(shù)列一定是有窮數(shù)列;
其中正確的個(gè)數(shù)( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2asin2x+4cos2x-3,若對(duì)x∈R均有f(x)≥f(-
π
3
)恒成立.
(Ⅰ)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,且a=2,f(A)=1,求△ABC的內(nèi)切圓半徑r的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案