14.角α終邊上有一點(-1,2),則下列各點中在角3α的終邊上的點是( 。
A.(-11,2)B.(-2,11)C.(11,-2)D.(2,-11)

分析 利用任意角的三角函數(shù)的定義求得sinα 和cosα的值,再利用3倍角公式求得tan3α的值,從而得出結論.

解答 解:∵角α終邊上有一點(-1,2),由三角函數(shù)的定義可知:sinα=$\frac{2}{\sqrt{5}}$,cosα=$\frac{-1}{\sqrt{5}}$,
∴sin3α=3sinα-4sin3α=$\frac{-2\sqrt{5}}{25}$,cos3α=4cos3α-3cosα=$\frac{11\sqrt{5}}{25}$,∴tan3α=$\frac{sin3α}{cos3α}$=$\frac{-2}{11}$,
故點(11,-2)在角3α的終邊上,
故選:C.

點評 本題最主要考查任意角的三角函數(shù)的定義,3倍角公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.如圖所示的四面體ABCD中,AB⊥AD,CD⊥DB,BD=DC=5,AB=4.
(1)當AC的長為多少時,面ABD⊥面BCD;
(2)當點D到面ABC的距離為3時,求該四面體ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知(1-2x)5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,則a0+a1+a2+a3+a4等于( 。
A.-31B.0C.33D.34

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知cosα=$\frac{1}{5}$,則cos(2α-2017π)=$\frac{23}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知命題p:若α為第一象限角,β為第二象限角,則α<β;命題q:在等比數(shù)列{an}中,若a2<a1,則數(shù)列{an}為遞減數(shù)列.下列命題為真命題的是( 。
A.p∧qB.(¬p)∧(¬q)C.(¬p)∧qD.p∨q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知復數(shù)z1=a-i(a∈R),z2=-1+i,若z1•z2為純虛數(shù),則a等于( 。
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.cos(-420°)cos300°=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知拋物線E:y2=2px(p>0)的準線與x軸交于點K,過K點作曲線C:x2-4x+3+y2=0的切線,切點M到x軸的距離為$\frac{2\sqrt{2}}{3}$
(Ⅰ)求拋物線E的方程
(Ⅱ)設A,B是拋物線E上分別位于x軸兩側的兩個動點,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{9}{4}$(其中O為坐標原點)
(i)求證:直線AB上必過定點,并求出該定點Q的坐標
(ii)過點Q作AB的垂線與拋物線交于G,D兩點,求四邊形AGBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),的離心率為$\frac{{\sqrt{3}}}{2}$,其左頂點A在圓O:x2+y2=16上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點P為橢圓C上不同于點A的點,直線AP與圓O的另一個交點為Q.是否存在點P,使得$\frac{|PQ|}{|AP|}$=3?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案