分析 (1)先根據(jù)兩角和公式對函數(shù)解析式進行化簡,再根據(jù)正弦函數(shù)的性質得出答案.
(2)確定變量的范圍,即可求出f(x)在$[0,\frac{π}{2}]$上的最值.
解答 解:(1)$f(x)=2{sin^2}x+\sqrt{3}sin2x+1$=$1-cos2x+\sqrt{3}sin2x+1$
=$\sqrt{3}sin2x-cos2x+2$
=$2sin(2x-\frac{π}{6})+2$
$\begin{array}{l}∴-\frac{π}{2}+2kπ≤2x-\frac{π}{6}≤\frac{π}{2}+2kπ\(zhòng)\∴-\frac{π}{6}+kπ≤x≤\frac{π}{3}+kπ\(zhòng)end{array}$
∴f(x)的單調遞增區(qū)間為$[{-\frac{π}{6}+kπ,\frac{π}{3}+kπ}]$
(2)∵$0≤x≤\frac{π}{2}$
∴$-\frac{π}{6}≤2x-\frac{π}{6}≤\frac{5π}{6}$
∴$sin(2x-\frac{π}{6})∈[{-\frac{1}{2},1}]$
∴f(x)∈[1,4].
點評 本題主要考查兩角和公式及三角函數(shù)單調性、最值問題.把三角函數(shù)化簡成y=Asin(ωx+φ)的形式很關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({1,\frac{{\sqrt{5}}}{2}})$ | B. | $({\sqrt{5},+∞})$ | C. | $({\frac{{\sqrt{5}}}{2},\sqrt{5}})$ | D. | $({1,\frac{{\sqrt{5}}}{2}})∪({\sqrt{5},+∞})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com