A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 先求得(2x2-$\frac{1}{3\sqrt{x}}$)n的展開式的通項公式,則由題意可得x的冪指數(shù)等于零有解,從而求得正整數(shù)n的最小值.
解答 解:根據(jù)(2x2-$\frac{1}{3\sqrt{x}}$)n的展開式的通項公式為 Tr+1=${C}_{n}^{r}$•2nx2n-2r•(-$\frac{1}{3}$)r•${x}^{-\frac{r}{2}}$=(-$\frac{2}{3}$)r•${C}_{n}^{r}$•${x}^{2n-\frac{5r}{2}}$,
則由題意可得 2n=$\frac{5r}{2}$有解,r=0、1、2、3…n,
故正整數(shù)n的最小值為 5,
故選:D.
點評 本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,求展開式中某項的系數(shù),二項式系數(shù)的性質(zhì),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ①④ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | b<c<a | C. | c<b<a | D. | a>b>c |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com