在△ABC中,若a=7,b=8,cosC=
13
14
,則c=(  )
A、1B、2C、3D、4
考點:余弦定理
專題:解三角形
分析:利用余弦定理列出關系式,將a,b,cosC的值代入即可求出c的值.
解答: 解:∵在△ABC中,a=7,b=8,cosC=
13
14
,
∴由余弦定理得:c2=a2+b2-2abcosC=49+64-2×7×8×
13
14
=49+64-104=9,
則c=3,
故選:C.
點評:此題考查了余弦定理,熟練掌握余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a是在區(qū)間[-3,0]上的任意一個實數(shù),b是在區(qū)間[-2,0]上任意一個實數(shù),則使原點到直線(a+1)x-(1-b)y+
2
=0的距離不大于1的概率為( 。
A、
5
6
-
π
12
B、
π
12
-
1
6
C、
7
6
-
π
12
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=x+
1
x
(x<0)的單調(diào)遞增區(qū)間為( 。
A、(-∞,-1)
B、(-1,0)
C、(-∞,0)
D、(-∞,-4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

323和391的最大公約數(shù)是( 。
A、21B、19C、17D、13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

利用基本不等式求最值,下列各式運用正確的是( 。
A、y=x+
4
x
≥2
x•
4
x
=4
B、y=sinx+
4
sinx
≥2
sinx•
4
sinx
=4(x為銳角)
C、y=3x+
4
3x
≥2
3x
4
3x
=4
D、y=lgx+4logx10≥2
lgx•4logx10
=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩條直線l1:x+my+
6
5
=0,l2:(m-2)x+15y+2m=0,當m為何值時,l1與l2
(1)平行;
(2)相交;
(3)垂直;
(4)重合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面內(nèi)有一個五邊形ABCEF,且關于線段BC對稱(如圖1所示),F(xiàn)E⊥CE,BF=FE=1,CB=CE=
3
,沿BC將平面ABCD折起,使平面ABCD⊥平面ECBF,連接AF、DE、AE得到如圖2所示的幾何體.
(1)證明:DE∥平面AFB;
(2)求二面角E-AD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=ex-a(x+1)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設g(x)=f(x)+
a
ex
,且A(x1,y1),B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點,若對任意的a≤-1,直線AB的斜率大于常數(shù)m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a3=8,a9=2a4,Sn是等比數(shù)列{bn}的前n項和,其中S3=
26
27
,S6=
728
729

(1)求數(shù)列{an},{bn}的通項公式an,bn;
(2)設cn=
an
bn
,求{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案