1.對(duì)于兩隨機(jī)事件A,B若P(A∪B)=P(A)+P(B)=1,則事件A,B的關(guān)系是( 。
A.互斥且對(duì)立B.互斥不對(duì)立
C.既不互斥也不對(duì)立D.以上均有可能

分析 通過(guò)理解互斥與對(duì)立事件的概念,核對(duì)四個(gè)選項(xiàng)即可得到正確答案.

解答 解:若是在同一試驗(yàn)下,由P(A∪B)=P(A)+P(B)=1,說(shuō)明事件A與事件B一定是對(duì)立事件,
但若在不同試驗(yàn)下,雖然有P(A∪B)=P(A)+P(B)=1,但事件A和B也不見(jiàn)得對(duì)立,
所以事件A與B的關(guān)系是不確定的.
故選:D

點(diǎn)評(píng) 本題考查了互斥事件與對(duì)立事件的概念,是基礎(chǔ)的概念題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)$f(x)=a{x^3}+bx+\frac{c}{x}+4$,滿足f(lg2015)=3,則$f(lg\frac{1}{2015})$的值為(  )
A.-3B.3C.5D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.cos$\frac{17π}{6}$=$-\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)=lg(x2-x-6)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,-2)B.(3,+∞)C.(-∞,-2)∪(3,+∞)D.(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知$tanα=-\frac{1}{2},\frac{π}{2}<α<π$,則sinα=$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.若函數(shù)f(x)為定義域D上的單調(diào)函數(shù),且存在區(qū)間[a,b]⊆D,使得當(dāng)x∈[a,b]時(shí),函數(shù)f(x)的值域恰好為[a,b],則稱函數(shù)f(x)為D上的“正函數(shù)”,區(qū)間[a,b]為函數(shù)f(x)的“正區(qū)間”.
(1)試判斷函數(shù)f(x)=$\frac{3}{4}$x2-3x+4是否為“正函數(shù)”?若是“正函數(shù)”,求函數(shù)f(x)的“正區(qū)間”;若不是“正函數(shù)”,請(qǐng)說(shuō)明理由;
(2)設(shè)命題p:f(x)=$\sqrt{x-\frac{8}{9}}$+m是“正函數(shù)”;命題q:g(x)=x2-m(x<0)是“正函數(shù)”.若p∧q是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.蘋果手機(jī)上的商標(biāo)圖案(如圖所示)是在一個(gè)蘋果圖案中,以曲線段AB為分界線,裁去一部分圖形制作而成的,如果該分界線是一段半徑為R的圓弧,且A、B兩點(diǎn)間的距離為$\sqrt{2}R$,那么分界線的長(zhǎng)度應(yīng)為(  )
A.$\frac{πR}{6}$B.$\frac{πR}{3}$C.$\frac{πR}{2}$D.πR

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)集合M={y|y=2x},N={y|y=x2+1},則M∩N=(  )
A.MB.NC.D.有限集

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{-x},x∈(-∞,1)}\\{lo{g}_{27}x,x∈[1,+∞)}\end{array}\right.$,則滿足f(x)=$\frac{1}{3}$的x的值是3.

查看答案和解析>>

同步練習(xí)冊(cè)答案