11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{-x},x∈(-∞,1)}\\{lo{g}_{27}x,x∈[1,+∞)}\end{array}\right.$,則滿足f(x)=$\frac{1}{3}$的x的值是3.

分析 由函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{-x},x∈(-∞,1)}\\{lo{g}_{27}x,x∈[1,+∞)}\end{array}\right.$,分類求出滿足f(x)=$\frac{1}{3}$的x的值,綜合討論結(jié)果,可得答案.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{-x},x∈(-∞,1)}\\{lo{g}_{27}x,x∈[1,+∞)}\end{array}\right.$,
當(dāng)x<1時,解f(x)=3-x=$\frac{1}{3}$得:x=1(舍去);
當(dāng)x≥1時,解f(x)=log27x=$\frac{1}{3}$得:x=3,
綜上所述,x=3,
故答案為:3

點評 本題考查的知識點是分段函數(shù)的應(yīng)用,已知函數(shù)值,求自變量,就是解方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.對于兩隨機事件A,B若P(A∪B)=P(A)+P(B)=1,則事件A,B的關(guān)系是(  )
A.互斥且對立B.互斥不對立
C.既不互斥也不對立D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-kt}\\{y=t}\end{array}\right.$(t為參數(shù)),以O(shè)為極點,Ox為極軸的極坐標系中,曲線C的極坐標方程為ρcos2θ=sinθ.
(1)寫出直線l和曲線C的普通方程:
(2)若直線l和曲線C有兩個不同的交點,求實數(shù)k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)y=2-x+m的圖象不經(jīng)過第一象限,則m的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn,點(n,2Sn)(n∈N+)均在函數(shù)y=x2+x的圖象上
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(2cos2x,1),$\overrightarrow$=(2cos(2x-$\frac{π}{3}$),-1).令f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的最小正周期及單調(diào)增區(qū)間.
(2)若f($\frac{1}{4}$θ)=$\frac{2}{3}$,且θ∈($\frac{π}{6}$,$\frac{5π}{6}$),求cosθ的值.
(2)當(dāng)x∈[$\frac{π}{4}$,$\frac{π}{2}$]時,求f(x)的最小值以及取得最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.點P(x0,8)在拋物線y2=-32x上,F(xiàn)為拋物線的焦點,則PF=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=$\left\{\begin{array}{l}{1,x為有理數(shù)}\\{π,x為無理數(shù)}\end{array}\right.$,下列結(jié)論不正確的( 。
A.此函數(shù)為偶函數(shù)B.此函數(shù)的定義域是R
C.此函數(shù)既有最大值也有最小值D.方程f(x)=-x無解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知:數(shù)列{an},{bn}滿足$\left\{\begin{array}{l}{{a}_{n}=2{a}_{n-1}+_{n-1}}\\{_{n}=3{a}_{n-1}+4_{n-1}}\end{array}\right.$(n≥2)且a1=2,b1=3,求an,bn的通項公式.

查看答案和解析>>

同步練習(xí)冊答案