A. | x1>x2 | B. | x1<x2 | C. | x1+x2>0 | D. | x1+x2<0 |
分析 先證明函數(shù)f(x)是R上單調(diào)遞增函數(shù),是奇函數(shù),由f(x1)+f(x2)>0,即可推得x1+x2>0.
解答 解:∵f(x)=x3+sinx,
∴f′(x)=3x2+cosx=3x2+cosx,
∵x∈[-1,1],∴3x2≥0,cosx>0,
故f′(x)>0,
故函數(shù)f(x)是[-1,1]上單調(diào)遞增函數(shù);
又因為f(-x)=(-x)3+sin(-x)=-x3-sinx=-(x3+sinx)=-f(x)
所以有:f(x1)+f(x2)>0⇒f(x1)>-f(x2)=f(-x2)⇒x1>-x2⇒x1+x2>0
故選:C.
點評 本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)奇偶性的判定,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4x±y=0 | B. | x±4y=0 | C. | 2x±y=0 | D. | x±2y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,4) | B. | (4,5) | C. | (-3,-2) | D. | (2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | x1 | $\frac{1}{3}$ | x2 | $\frac{7}{3}$ | x3 |
Asin(ωx+φ)+B | 0 | $\sqrt{3}$ | 0 | -$\sqrt{3}$ | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -1 | C. | 1 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11 | B. | 20 | C. | 29 | D. | 31 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com