18.已知函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)k>0,使|f(x)|≤$\frac{k}{2016}$|x|對(duì)一切實(shí)數(shù)x均成立,則稱f(x)為“期盼函數(shù)”.給出下列函數(shù):
①f(x)=x3;②f(x)=$\sqrt{3}$sinx+cosx;③f(x)=$\frac{x}{{x}^{2}+x+1}$;④f(x)=$\frac{x}{{2}^{x}+1}$
其中f(x)是“期盼函數(shù)”的有( 。﹤(gè).
A.1B.2C.3D.4

分析 根據(jù)新定義,對(duì)每個(gè)函數(shù)一一驗(yàn)證,即可得出結(jié)論.

解答 解:①f(x)=x3,|f(x)|=|x3|≤$\frac{k}{2016}$|x|,即|x2|≤$\frac{k}{2016}$,不存在這樣的k對(duì)一切實(shí)數(shù)x均成立,
②f(x)=$\sqrt{3}$sinx+cosx=2sin(x+$\frac{π}{6}$),|f(x)|=|2sin(x+$\frac{π}{6}$)|≤$\frac{k}{2016}$|x|,
x=0時(shí),|f(x)|=1≤0,不成立;
③f(x)=$\frac{x}{{x}^{2}+x+1}$,則|f(x)|=|$\frac{x}{{x}^{2}+x+1}$|=$\frac{|x|}{{(x+\frac{1}{2})}^{2}+\frac{3}{4}}$≤$\frac{4}{3}$|x|,
故對(duì)任意的$\frac{k}{2016}$>$\frac{4}{3}$,都有|f(x)|<$\frac{k}{2016}$|x|,故③正確;
④f(x)=$\frac{x}{{2}^{x}+1}$,|f(x)|=$\frac{|x|}{{2}^{x}+1}$≤$\frac{k}{2016}$|x|,故④正確;
故選:B.

點(diǎn)評(píng) 本題主要考查學(xué)生的閱讀理解能力.知識(shí)點(diǎn)方面主要考查了函數(shù)的最值及其幾何意義,綜合性較強(qiáng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,點(diǎn)$A(cosθ,\sqrt{2}sinθ),B(sinθ,0)$,其中θ∈R.
(1)當(dāng)θ∈[0,$\frac{π}{2}$]時(shí),求|$\overrightarrow{AB}$|的最大值.
(2)當(dāng)$θ∈[{0,\frac{π}{2}}]$,|$\overrightarrow{AB}$|=$\sqrt{\frac{5}{2}}$時(shí),求$sin(2θ+\frac{5π}{12})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知i是虛數(shù)單位,若1+i=z(1-i),則z=( 。
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=sin($\frac{x}{2}$+$\frac{π}{4}$),則f($\frac{π}{2}$)=( 。
A.-1B.1C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),點(diǎn)M(3,$\sqrt{2}$)在此雙曲線上,點(diǎn)F2到直線MF1的距離為$\frac{4\sqrt{6}}{9}$,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.偶函數(shù)f(x)定義在(-1,0)∪(0,1)上,且$f(\frac{1}{2})=0$,當(dāng)x>0時(shí),總有$(\frac{1}{x}-x)f'(x)•ln(1-{x^2})>2f(x)$,則不等式f(x)<0的解集為( 。
A.{x|-1<x<1且x≠0}B.$\left\{x\right.|-1<x<-\frac{1}{2}$或$\frac{1}{2}<x<\left.1\right\}$
C.$\left\{{x|-\frac{1}{2}}\right.<x<\frac{1}{2}$且x≠0}D.{x|-1<x<-$\frac{1}{2}$或$0<x<\left.{\frac{1}{2}}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)如圖,平行四邊形ABCD中,M、N分別為DC、BC的中點(diǎn),已知$\overrightarrow{AM}=\overrightarrow{c}$、$\overrightarrow{AN}=\overrightarrow0igyf1a$,試用$\overrightarrow{c}$、$\overrightarrow69kheso$表示$\overrightarrow{AB}$和$\overrightarrow{AD}$.
(2)在△ABC中,若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$若P,Q,S為線段BC的四等分點(diǎn),試用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AP}+\overline{AQ}+\overrightarrow{AS}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若存在實(shí)數(shù)x0和正實(shí)數(shù)△x,使得函數(shù)f(x)滿足f(x0+△x)=f(x0)+4△x,則稱函數(shù)f(x)為“可翻倍函數(shù)”,則下列四個(gè)函數(shù)
①$f(x)=\sqrt{x}$;  ②f(x)=x2-2x,x∈[0,3];
③f(x)=4sinx; ④f(x)=ex-lnx.
其中為“可翻倍函數(shù)”的有①④(填出所有正確結(jié)論的番號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足(2b-c)cosA=acosC.
(])求角A的大小;
(2)設(shè)$\overrightarrow{m}$=(0,-1),$\overrightarrow{n}$=(cosB,2cos2$\frac{C}{2}$).試求|$\overrightarrow{m}$+$\overrightarrow{n}$|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案