已知函數(shù)f(x)=ax2+bx+c(a≠0),判斷并證明函數(shù)f(x)的單調(diào)性.
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先,求導(dǎo)數(shù),然后,針對a的正負(fù)情形進(jìn)行討論,得到相應(yīng)的單調(diào)區(qū)間.
解答: 解:∵f(x)=ax2+bx+c(a≠0),
∴f′(x)=2ax+b.
當(dāng)a>0時(shí),令f'(x)>0,解得x>-
b
2a
,
對應(yīng)的增區(qū)間為(-
b
2a
,+∞),
令f'(x)<0,解得x<-
b
2a
,
對應(yīng)的減區(qū)間為(-∞,-
b
2a
,),
當(dāng)a<0時(shí),令f'(x)>0,解得x<-
b
2a
,
對應(yīng)的增區(qū)間為(-∞,-
b
2a
,),
令f'(x)<0,解得x>-
b
2a
,
對應(yīng)的減區(qū)間為(-
b
2a
,+∞).
點(diǎn)評:本題重點(diǎn)考查了函數(shù)的單調(diào)性的判斷與證明,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐S-ABC中,SA⊥底面ABC,∠ABC=90°,且SA=AB,點(diǎn)M是SB的中點(diǎn),AN⊥SC且交SC于點(diǎn)N.
(1)求證:SC⊥平面AMN;
(2)當(dāng)AB=BC=1時(shí),求三棱錐M-SAN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,若PA⊥平面ABCD,且四邊形ABCD是菱形,求證:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩機(jī)床同時(shí)加工直徑為100cm的零件,為檢驗(yàn)質(zhì)量,各從中抽取6件測量,數(shù)據(jù)如下:
甲:99  100  98  100  100  103
乙:99  100  102  99  100  100
(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù)及方差;
(2)根據(jù)計(jì)算結(jié)果判斷哪臺機(jī)床加工零件的質(zhì)量更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=|x-3|,求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=
2-x,x∈(-∞,1]
log81x,x∈(1,+∞)
,求滿足f(x)=
1
4
的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2-2x+3,求函數(shù)在[-1,4]上的最小值及最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

輪船A和輪船B在中午12時(shí)離開海港C,兩艘輪船的航行方向之間的夾角為120°,輪船A的航行速度是25海里/小時(shí),輪船B的航行速度是15海里/小時(shí),求下午3時(shí)兩船之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校在2012年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如圖所示.
成績分組頻數(shù)頻率
(160,165]50.05
(165,170]0.35
(170,175]30
(175,180]200.20
(180,185]100.10
合計(jì)1001
(1)請先求出頻率分布表中①、②位置相應(yīng)的數(shù)據(jù),再在答題紙上完成頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,該高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生接受A考官的面試,求第四組至少有一名學(xué)生被考官A面試的概率?

查看答案和解析>>

同步練習(xí)冊答案