9.已知函數(shù)f(x)=ex-e-x-2x.討論f(x)的單調(diào)性.

分析 先求出函數(shù)的導(dǎo)數(shù),得到導(dǎo)函數(shù)大于等于0,從而得到函數(shù)的單調(diào)性.

解答 解:∵f(x)=ex-e-x-2x,
∴f′(x)=ex+e-x-2=$\frac{{{(e}^{x}-1)}^{2}}{{e}^{x}}$≥0,
∴函數(shù)f(x)在R上單調(diào)遞增.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在已知α∈($\frac{π}{2}$,π),$sin(α-\frac{π}{4})=\frac{3}{5}$,則tanα等于-$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知x∈[-$\frac{π}{6}$,$\frac{π}{2}$],求函數(shù)y=(sinx+1)(cosx+1)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.?dāng)?shù)列{an}中a1=1,an+1=an+n,則a10=46.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知向量$\overrightarrow{OA}$=(4,-3),$\overrightarrow{OB}$=(5,-2),$\overrightarrow{OC}$=(m-5,3-2m),$\overrightarrow{OD}$=($\sqrt{m-1}$,2m-8),且A、B、C三點(diǎn)共線,則∠COD=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知隨機(jī)變量ξ的分布列如圖所示,若η=3ξ+2,則Eη=( 。
ξ123
p$\frac{1}{2}$t$\frac{1}{3}$
A.$\frac{11}{6}$B.$\frac{15}{2}$C.$\frac{11}{2}$D.$\frac{33}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.某小組共有10名學(xué)生,其中女生3名,現(xiàn)選舉2名代表,至少有1名女生當(dāng)選的概率為( 。
A.$\frac{7}{15}$B.$\frac{8}{15}$C.$\frac{3}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在正三角形ABC中,D是BC上的點(diǎn),AB=3,BD=1,則$\overrightarrow{AB}•\overrightarrow{AD}$=$\frac{15}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,ADB為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點(diǎn),|AB|=4,有一曲線C過(guò)Q點(diǎn),有一動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變.
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(Ⅱ)求曲線C與半圓ADB的公共弦的長(zhǎng),并求此公共弦所在的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案