11.?x∈R,使不等式|x-2|+|x-4|≤2$\sqrt{2}$sinα成立,則α的取值范圍為2kπ+$\frac{π}{4}$≤α≤2kπ+$\frac{3π}{4}$(k∈Z).

分析 由絕對值三角不等式可得|x-2|+|x-4|的最小值,利用?x∈R,使不等式|x-2|+|x-4|≤2$\sqrt{2}$sinα成立,可得sinα≥$\frac{\sqrt{2}}{2}$,
即可求出α的取值范圍.

解答 解:由絕對值三角不等式可得|x-2|+|x-4|≥|x-2-x+4|=2,
∵?x∈R,使不等式|x-2|+|x-4|≤2$\sqrt{2}$sinα成立,
∴2$\sqrt{2}$sinα≥2,
∴sinα≥$\frac{\sqrt{2}}{2}$,
∴2kπ+$\frac{π}{4}$≤α≤2kπ+$\frac{3π}{4}$(k∈Z).
故答案為:2kπ+$\frac{π}{4}$≤α≤2kπ+$\frac{3π}{4}$(k∈Z).

點(diǎn)評 本題考查絕對值三角不等式的運(yùn)用,考查三角不等式,考查學(xué)生分析解決問題的能力正確求出|x-2|+|x-4|的最小值是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆甘肅會寧縣一中高三上學(xué)期9月月考數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知函數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)若有最大值3,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x3+ax2+bx+c在x=1處取得極值,且在x=-1處的切線斜率為2.
(1)求a,b的值;
(2)若x∈[-1,2]時,f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在等腰直角三角形ABC中,AC=BC,D是BC的中點(diǎn),E是線段AB上的點(diǎn),且AE=2BE.求證:AD⊥CE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在正方形ABCD中,點(diǎn)P在AD上,且不與A、D重合,BP的垂直平分線分別交CD,AB于E,F(xiàn)兩點(diǎn).垂足為Q,過點(diǎn)E作EH⊥AB于點(diǎn)H.
(1)求證:HF=AP;
(2)若正方形ABCD的邊長為12,AP=4,求線段EQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=(3x+1)ex+1+kx(k≥-2),若存在唯一整數(shù)m,使f(m)≤0,則實(shí)數(shù)k的取值范圍是( 。
A.($\frac{5}{e}$,2]B.[$\frac{5}{2e}$,2)C.(-$\frac{1}{2}$,-$\frac{5}{2e}$]D.[-2,-$\frac{5}{2e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓C:x2+y2+4x-28=0內(nèi)一點(diǎn)A(2,0),點(diǎn)M在圓C上運(yùn)動,若MA的垂直平分線交CM于一點(diǎn)P(C為圓心).
(1)求點(diǎn)P的軌跡方程;
(2)在點(diǎn)P的軌跡上是否存在點(diǎn)N(2,-1)對稱的兩點(diǎn)?若存在,請求出對稱點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)數(shù)列{an}滿足a1=1,an+1=Aan+$\frac{B}{{a}_{n}}$+C(n∈N*
(Ⅰ)若A=2,B=0,C=1,求證:{an+1}是等比數(shù)列,并求{an}通項(xiàng)公式;
(Ⅱ)若A=1,B=1,C=0
(i)求證:2≤an+12-an2≤3
(ii)求證:$\frac{3n-1}{3n-2}$≤$\frac{{a}_{n+1}}{{a}_{n}}$≤$\frac{2n}{2n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,點(diǎn)D在AB上,E在AC上.且∠B=∠C,那么補(bǔ)充下列一個條件后仍無法判定△ABE≌△ACD的是(  )
A.AE=ADB.∠AEB=∠ADCC.CE=BDD.AB=AC

查看答案和解析>>

同步練習(xí)冊答案