8.已知:tanα=3,求下列各式的值.
(1)$\frac{\sqrt{3}cosα-sinα}{\sqrt{3}cosα+sinα}$;
(2)2sin2α-3sinαcosα

分析 (1)利用同角三角函數(shù)基本關(guān)系式,化簡表達式為正切函數(shù)的形式,代入求解即可.
(2)利用同角三角函數(shù)基本關(guān)系式,化簡表達式為正切函數(shù)的形式,代入求解即可.

解答 解:(1)tanα=3,
$\frac{\sqrt{3}cosα-sinα}{\sqrt{3}cosα+sinα}$=$\frac{\sqrt{3}-tanα}{\sqrt{3}+tanα}$=$\frac{\sqrt{3}-3}{\sqrt{3}+3}$=$\frac{(1-\sqrt{3})^{2}}{(1-\sqrt{3})(1+\sqrt{3})}$=$\frac{4-2\sqrt{3}}{-2}$=$\sqrt{3}-2$;
(2)2sin2α-3sinαcosα=$\frac{2si{n}^{2}α-3sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2ta{n}^{2}α-3tanα}{ta{n}^{2}α+1}$=$\frac{18-9}{10}$=$\frac{9}{10}$.

點評 本題考查同角三角函數(shù)基本關(guān)系式,三角函數(shù)化簡求值,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和為Sn.且Sn=2n2+2n.
(1)求數(shù)列{an}的通項公式;
(2)若點(bn,an)在函數(shù)y=1og2x的圖象上,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x3+ax2+bx+c在x=-1和x=1時取得極值,且f(-2)=4.
(1)求函數(shù)f(x)的表達式;
(2)求函數(shù)f(x)在區(qū)間[-3,3]上的極值;
(3)若關(guān)于x的方程f(x)-a=0在實數(shù)集R上只有一個解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=2x2-lnx在其定義域的一個子區(qū)間(m,m+1)內(nèi)有極值,則實數(shù)m的取值范圍是$0≤m<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若數(shù)列{an}滿足a1=1,且an+1=4an+2n,則通項an=22n-1-2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f(x)=$\left\{{\begin{array}{l}{(a-2)x-1}&{(x≤1)}\\{{{log}_a}x}&{(x>1)}\end{array}}$是R上的增函數(shù),那么實數(shù)a的取值范圍是(2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\overrightarrow a$=($\sqrt{3}$sinωx,cosωx),$\overrightarrow b$=(cosωx,-cosωx),(ω>0),函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$+$\frac{1}{2}$,直線x=x1,x=x2是y=f(x)圖象的任意兩條對稱軸,且|x1-x2|的最小值為$\frac{π}{4}$.
(1)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(2)若cosx≥$\frac{{\sqrt{2}}}{2}$,x∈(0,π),且f(x)-m=0有兩個實根x1,x2
①求實數(shù)m的取值范圍;
②求sin(x1+x2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知M的極坐標(biāo)為(2,$\frac{4π}{3}$),則M的直角坐標(biāo)為(-1,-$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知一個扇形的周長是6cm,該扇形的中心角是1弧度,則該扇形的面積為( 。ヽm2
A.2B.4C.6D.7

查看答案和解析>>

同步練習(xí)冊答案