17.已知M的極坐標(biāo)為(2,$\frac{4π}{3}$),則M的直角坐標(biāo)為(-1,-$\sqrt{3}$).

分析 利用x=ρcosθ,y=ρsinθ可得直角標(biāo).

解答 解:x=2$cos\frac{4π}{3}$=-1,y=2$sin\frac{4π}{3}$=-$\sqrt{3}$.
可得直角坐標(biāo)為:(-1,-$\sqrt{3}$).
故答案為::(-1,-$\sqrt{3}$).

點(diǎn)評(píng) 本題考查了極坐標(biāo)與直角坐標(biāo)的互化,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x3-3x+4,求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知:tanα=3,求下列各式的值.
(1)$\frac{\sqrt{3}cosα-sinα}{\sqrt{3}cosα+sinα}$;
(2)2sin2α-3sinαcosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,設(shè)△ABC頂點(diǎn)坐標(biāo)分別為A(0,a),B(-$\sqrt{5a}$,0),C($\sqrt{5a}$,0),Q(0,b),(其中a>0,b>0),圓M為△ABC的外接圓.
(1)當(dāng)a=9時(shí),求圓M的方程;
(2)當(dāng)a變化時(shí),圓M是否過(guò)某一定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo),若不是,請(qǐng)說(shuō)明理由;
(3)在(1)的條件下,若圓M上存在點(diǎn)P,滿(mǎn)足PQ=2PO,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù)
x3456
y2.53.545
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少?lài)崢?biāo)準(zhǔn)煤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)函數(shù)f(x)=sin(2x+φ)+cos(2x+φ)(|φ|<$\frac{π}{2}$)為偶函數(shù),則φ=( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+3t\\ y=2-4t\end{array}$ (t為參數(shù)),它與曲線C:(y-2)2-x2=1交于A、B兩點(diǎn).
(1)求|AB|的長(zhǎng);
(2)求點(diǎn)P(-1,2)到線段AB中點(diǎn)C的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)數(shù)列{an}為等比數(shù)列,則下面四個(gè)數(shù)列:①{an3};②{pan}(p為非零常數(shù));③{an•an+1};④{an+an+1}.其中是等比數(shù)列的序號(hào)為①②③.(填上所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知角α(-π≤α<π)的終邊過(guò)點(diǎn)P(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),則α=$-\frac{π}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案