15.已知直線l1:2x+y+1=0,l:4x+2y-1=0,則l1,l2之間的距離為( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{3\sqrt{5}}{10}$C.$\frac{\sqrt{5}}{5}$D.2

分析 利用兩條平行直線之間的距離公式,即可算出l1與l2的距離.

解答 解:直線l1:2x+y+1=0化成4x+2y+2=0
由平行兩條直線之間的距離,得l1與l2的距離為
d=$\frac{|2+1|}{\sqrt{16+4}}$=$\frac{3\sqrt{5}}{10}$
故選:B.

點評 本題給出兩條直線互相平行,求平行線間的距離,著重考查了兩條平行線的距離公式等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)函數(shù)f(x)=(2x-1)ex-ax+a,若存在唯一的整數(shù)x0使得f(x0)<0,則實數(shù)a的取值范圍是[$\frac{3}{2e}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)橢圓E的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M滿足$\overrightarrow{BM}$=2$\overrightarrow{MA}$,直線OM的斜率為$\frac{\sqrt{5}}{10}$,則橢圓E的離心率e=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}}$,b=log${\;}_{\frac{1}{3}}}$2,c=log23,則( 。
A.a>b>cB.a>c>bC.b>c>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某中學(xué)有三個年級,各年級男、女生人數(shù)如表:
高一年級高二年級高三年級
男生380300370
女生370200z
已知在全校學(xué)生中隨機抽取1名學(xué)生,抽到高二年級男生的概率為0.15.
(1)求z的值;  
(2)用分層抽樣的方法在高二年級中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2名學(xué)生,求這2名學(xué)生均為男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點A(3,4),B(-2,-1).若直線l:y=k(x-2)+1與線段AB相交,則k的取值范圍是( 。
A.[$\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$]∪[3,+∞)C.(-∞,0]∪[$\frac{1}{2}$,3)D.[$\frac{1}{2}$,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2b-c)cosA-acosC=0.
(Ⅰ)求角A的大。
(Ⅱ)若a=2,△ABC的面積為$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.前不久商丘市因環(huán)境污染嚴重被環(huán)保部約談后,商丘市近期加大環(huán)境治理力度,如表提供了商丘某企業(yè)節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標準煤)的幾組對應(yīng)數(shù)據(jù).
x3456
y2.5344.5
(Ⅰ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=bx+a;
(Ⅱ)已知該企業(yè)技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低了多少噸標準煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在區(qū)間(0,4)上任取一數(shù)x,則2<2x-1<4的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊答案