1.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-4≤0}\\{x-1≥0}\end{array}\right.$,則$\frac{xy}{2{x}^{2}+{y}^{2}}$的取值范圍是(  )
A.[$\frac{3}{11}$,$\frac{1}{3}$]B.[$\frac{3}{11}$,$\frac{\sqrt{2}}{4}$]C.[$\frac{1}{3}$,$\frac{\sqrt{2}}{4}$]D.[3,$\frac{11}{3}$]

分析 畫(huà)出約束條件的可行域,化簡(jiǎn)目標(biāo)函數(shù),求出直線的斜率的范圍,利用函數(shù)的最值求解目標(biāo)函數(shù)的范圍即可.

解答 解:實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-4≤0}\\{x-1≥0}\end{array}\right.$可行域如圖:
$\frac{y}{x}$的幾何意義是可行域內(nèi)的點(diǎn)與坐標(biāo)原點(diǎn)連線的斜率,
可得$\frac{y}{x}$∈[1,3].
$\frac{xy}{2{x}^{2}+{y}^{2}}$=$\frac{1}{\frac{2x}{y}+\frac{y}{x}}$,
令t=$\frac{y}{x}$,g(t)=$\frac{2}{t}+t$,t∈[1,3],g(t)∈[2$\sqrt{2}$,$\frac{11}{3}$],
$\frac{xy}{2{x}^{2}+{y}^{2}}$=$\frac{1}{\frac{2x}{y}+\frac{y}{x}}$∈[$\frac{3}{11}$,$\frac{\sqrt{2}}{4}$].
故選:B.

點(diǎn)評(píng) 本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,確定目標(biāo)函數(shù)的幾何意義,求解范圍是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某單位N名員工參加“我愛(ài)閱讀”活動(dòng),他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.下面是年齡的分布表:
區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50)
人數(shù)28ab
(Ⅰ)求正整數(shù)a,b,N的值;
(Ⅱ)現(xiàn)要從年齡低于40歲的員工用分層抽樣的方法抽取42人,則年齡在第1,2,3組得員工人數(shù)分別是多少?
(Ⅲ)為了估計(jì)該單位員工的閱讀傾向,現(xiàn)對(duì)該單位所有員工中按性別比例抽查的40人是否喜歡閱讀國(guó)學(xué)類(lèi)書(shū)籍進(jìn)行了調(diào)查,調(diào)查結(jié)果如下所示:(單位:人)
喜歡閱讀國(guó)學(xué)類(lèi) 不喜歡閱讀國(guó)學(xué)類(lèi) 合計(jì)
 男 14 4 18
 女 8 14 22
 合計(jì) 22 18 40
根據(jù)表中數(shù)據(jù),我們能否有99%的把握認(rèn)為該位員工是否喜歡閱讀國(guó)學(xué)類(lèi)書(shū)籍和性別有關(guān)系?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)在R上單調(diào)遞減,且f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),若f(-3)=2,則滿足-2≤f(2x-1)≤2的x的取值范圍是(  )
A.[-2,2]B.[-1,1]C.[-1,2]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.歐陽(yáng)修在《賣(mài)油翁》中寫(xiě)到:(翁)乃取一葫蘆置于地,以錢(qián)覆其口,徐以杓酌油瀝之,自錢(qián)孔入,而錢(qián)不濕,可見(jiàn),賣(mài)油翁的技藝讓人嘆為觀止,若銅錢(qián)是直徑為3cm的圓,中間是周長(zhǎng)為4cm的正方形孔.若隨機(jī)向銅錢(qián)上滴一滴油(油滴的大小忽略不計(jì)),則油滴正好落在孔中的概率是( 。
A.$\frac{3π}{4}$B.$\frac{1}{9π}$C.$\frac{4}{9π}$D.$\frac{9π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=||x|-6|.
(1)求不等式f(x)<5的整數(shù)解的個(gè)數(shù);
(2)若存在x∈R,使f(x)-|x|>10-m2成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知等比數(shù)列{an},a1=36,a5=$\frac{9}{4}$,求q和S5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.?dāng)S兩枚密度均勻的骰子,擲得兩個(gè)點(diǎn)數(shù)之和為8的概率是( 。
A.$\frac{1}{12}$B.$\frac{1}{11}$C.$\frac{5}{36}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{3}$sinx-cosx,x∈R
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在[0,π]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=xe2x+alnx+2ax(a∈R).
(1)當(dāng)a<0時(shí),討論函數(shù)f(x)的零點(diǎn)的個(gè)數(shù);
(2)若x>0時(shí),恒有f(x)<alnx+2ax+(2-k)(e4x-1)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案