10.已知函數(shù)f(x)=$\sqrt{3}$sinx-cosx,x∈R
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在[0,π]上的最小值.

分析 (Ⅰ)利用兩角差的正弦公式化簡(jiǎn)f(x)的解析式,再根據(jù)正弦函數(shù)的周期性,求得f(x)的最小正周期.
(Ⅱ)利用正弦函數(shù)的最值求得f(x)在[0,π]上的最小值.

解答 解:(Ⅰ)∵函數(shù)f(x)=$\sqrt{3}$sinx-cosx=2sin(x-$\frac{π}{6}$),
故它的最小正周期為T=$\frac{2π}{1}$=2π,
(Ⅱ)在[0,π]上,x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
故函數(shù)的最小值為2•(-$\frac{1}{2}$)=-1.

點(diǎn)評(píng) 本題主要考查兩角差的正弦公式,正弦函數(shù)的周期性、單調(diào)性、最值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.高一某班有學(xué)生56人,現(xiàn)將所有同學(xué)隨機(jī)編號(hào),用系統(tǒng)抽樣的方法,抽取一個(gè)容量為4的樣本,已知6號(hào)、34號(hào)、48號(hào)學(xué)生在樣本中,則樣本中還有一個(gè)學(xué)生的編號(hào)為( 。
A.18B.20C.21D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-4≤0}\\{x-1≥0}\end{array}\right.$,則$\frac{xy}{2{x}^{2}+{y}^{2}}$的取值范圍是(  )
A.[$\frac{3}{11}$,$\frac{1}{3}$]B.[$\frac{3}{11}$,$\frac{\sqrt{2}}{4}$]C.[$\frac{1}{3}$,$\frac{\sqrt{2}}{4}$]D.[3,$\frac{11}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若點(diǎn)P的柱坐標(biāo)為(2,$\frac{π}{6}$,$\sqrt{3}$),則P到直線Oy的距離為( 。
A.1B.2C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$\overrightarrow m=({sinA,cosA}),\overrightarrow n=({\sqrt{3},-1}),\overrightarrow m•\overrightarrow n=1$,且A為銳角
(1)求角A的大。
(2)求函數(shù)f(x)=cos2x+4cosAsinx(x∈R)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知銳角α,β滿足sin(α+β)cosβ=2cos(α+β)sinβ,當(dāng)α取得最大值時(shí),tan2α=$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.集合A={x|x+3≥2},B={x|-3<x<3且x∈Z},則A∩B=(  )
A.[0,1,2,3}B.{-1,0,1,2}C.{1,2,3}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在空間直角坐標(biāo)系O-xyz中,點(diǎn)P(-2,4,-3)關(guān)于yOz平面對(duì)稱點(diǎn)的坐標(biāo)為(  )
A.(2,4,-3)B.(-2,-4,3)C.(2,-4,-3)D.(-2,4,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題p:?x∈R,sinx>1,命題q:?a,b∈(0,+∞),$\frac{a+b}{2}$≥$\sqrt{ab}$,則下列判斷錯(cuò)誤的是( 。
A.p或q為真,非q為假B.p或q為真,非p為真
C.p且q為假,非p為假D.p且q為假,p或q為真

查看答案和解析>>

同步練習(xí)冊(cè)答案