3.函數(shù)y=ax-5+31(a≠0)的圖象過定點(diǎn)P,且點(diǎn)P在指數(shù)函數(shù)f(x)=bx的圖象上,則f(2)=4.

分析 根據(jù)指數(shù)函數(shù)的圖象過定點(diǎn)(0,1),求出點(diǎn)P的坐標(biāo),再代入指數(shù)函數(shù)f(x)的解析式,求出f(x),從而求出f(2)的值.

解答 解:∵函數(shù)y=ax-5+31(a≠0)的圖象過定點(diǎn)P,
令x-5=0,解得x=5,
∴y=1+31=32,
即點(diǎn)P(5,32);
又點(diǎn)P在指數(shù)函數(shù)f(x)=bx的圖象上,
∴f(5)=b5=32,
解得b=2,
∴f(x)=2x
∴f(2)=22=4.
故答案為:4.

點(diǎn)評 本題考查了指數(shù)函數(shù)的圖象恒過定點(diǎn)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.把函數(shù)y=sin3x的圖象進(jìn)行怎樣的變換,就能得到下列函數(shù)的圖象.
(1)y=sin(3x-$\frac{π}{3}$);
(2)y=sin(3x+$\frac{π}{4}$)-2;
(3)y=-sinx;
(4)y=-sin3x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式|x-3|+|6-x|≥5的解集為{x|x≤2或x≥7}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=x(ex-e-x),則使得f(x)>f(2x-1)成立的x的取值范圍是(  )
A.($\frac{1}{3}$,1)B.(-∞,$\frac{1}{3}$)∪(1,+∞)C.(-$\frac{1}{3}$,$\frac{1}{3}$)D.(-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)y=ax(a>0且a≠1)在[0,1]上的最大值與最小值之和為3,則tan$\frac{a•180°}{6}$的值為(  )
A.0B.$\frac{\sqrt{3}}{3}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直棱柱ABC-A1B1C1,∠ACB=60°,AC=BC=4,AA1=6,E、F分別是棱CC1、AB的中點(diǎn).
(1)求證:平面 AEB1⊥平面AA1B1B;
(2)求四棱錐A-ECBB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b∈R,求證:a2-ab+b2≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知數(shù)列{an}為等比數(shù)列,Sn是它的前n項(xiàng)和,若a2•a3=2a1,且a4與2a7的等差中項(xiàng)為$\frac{5}{4}$,則S6=( 。
A.35B.33C.31D.$\frac{63}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)的定義域?yàn)镈,若函數(shù)f(x)滿足條件:存在[a,b]⊆D,使f(x)在[a,b]上的值域?yàn)閇$\frac{a}{2}$,$\frac{2}$],則稱f(x)為“倍縮函數(shù)”,若函數(shù)f(x)=log2(2x+t)為“倍縮函數(shù)”,則t的范圍為(0,$\frac{1}{4}$).

查看答案和解析>>

同步練習(xí)冊答案