5.已知$a=\root{3}{5},b={5^{0.3}},c=2{log_5}2$,則a,b,c的大小關(guān)系為( 。
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

分析 利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性直接求解.

解答 解:∵$a=\root{3}{5},b={5^{0.3}},c=2{log_5}2$,
∴a=${5}^{\frac{1}{3}}$>b=50.3>50=1,
c=2log52=log54<log55=1,
∴c<b<a.
故選:A.

點(diǎn)評(píng) 本題考查三個(gè)數(shù)的大小的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某工廠對(duì)某種產(chǎn)品的產(chǎn)量與成本的資料分析后有如表數(shù)據(jù):
產(chǎn)量x(千件)2356
成本y(萬元)78912
經(jīng)過分析,知道產(chǎn)量x和成本y之間具有線性相關(guān)關(guān)系.
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\hat y$=$\hat b$x+$\hat a$;
(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)產(chǎn)量為10千件時(shí)的成本.
參考公式:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為$\hat b$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a$=$\overline y$-$\hat b$$\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1,則此雙曲線的離心率e為( 。
A.$\frac{1}{2}$B.2C.2$\sqrt{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=alnx+x2+bx(a為實(shí)常數(shù)).
(I)若a=-2,b=-3,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若b=0,且a>-2e2,求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(Ⅲ)設(shè)b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若直線l過點(diǎn)(2,3),且與圓(x-1)2+(y+2)2=1相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)復(fù)數(shù)z滿足$(1+i)z=|\sqrt{3}-i|$,則z=( 。
A.1-iB.1+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對(duì)于兩個(gè)圖形F1,F(xiàn)2,我們將圖形F1上的任意一點(diǎn)與圖形F2上的任意一點(diǎn)間的距離中的最小值,叫作圖形F1與圖形F2的距離.若兩個(gè)函數(shù)圖象的距離小于1,稱這兩個(gè)函數(shù)互為“可及函數(shù)”.給出下列幾對(duì)函數(shù),其中互為“可及函數(shù)”的是( 。
A.f(x)=cosx,g(x)=2B.$f(x)={log_2}({{x^2}-2x+5}),g(x)=sin\frac{π}{2}x$
C.$f(x)=\sqrt{4-{x^2}},g(x)=\frac{3}{4}x+\frac{15}{4}$D.$f(x)=x+\frac{2}{x},g(x)=lnx+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合$M=\{y|y={x^{\frac{1}{2}}},1≤x≤9\}$,N={x|y=log2(2-x)},則圖中陰影部分表示的集合為( 。
A.{x|2≤x≤3}B.{x|1≤x≤2}C.$\{x|1≤x≤\sqrt{3}\}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ex-x-2(e為自然對(duì)數(shù)的底數(shù)).
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若k為正整數(shù),且當(dāng)x>0時(shí),$\frac{1}{f'(x)}+1>\frac{k}{x+1}$,求k的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案