分析 (I)設(shè)橢圓E:Ax2+By2=1(A>0,B>0),代入A,B,C的坐標,解方程可得A,B,進而得到橢圓方程;
(II)將直線l:y=k(x-1)代入橢圓方程,運用韋達定理,求出直線AM,BN的方程,解得交點的橫坐標,化簡整理,即可得到交點在定直線x=4上.
解答 解:(I)設(shè)橢圓E:Ax2+By2=1(A>0,B>0),
將A,B,C代入得4A=1,A+$\frac{9}{4}$B=1,
解得A=$\frac{1}{4}$,B=$\frac{1}{3}$,
可得橢圓E的方程為$\frac{x^2}{4}+\frac{y^2}{3}=1$;
(II)證明:將直線l:y=k(x-1)代入橢圓方程得
(3+4k2)x2-8k2x+4(k2-3)=0,
設(shè)M(x1,y1),N(x2,y2),
則${x_1}+{x_2}=\frac{{8{k^2}}}{{3+4{k^2}}},{x_1}{x_2}=\frac{{4({k^2}-3)}}{{3+4{k^2}}}⇒2{x_1}{x_2}=5({x_1}+{x_2})-8$,
直線AM的方程為$y=\frac{y_1}{{{x_1}+2}}(x+2)$,即$y=\frac{{k({x_1}-1)}}{{{x_1}+2}}(x+2)$,
直線BN的方程為$y=\frac{y_2}{{{x_2}-2}}(x-2)$,即$y=\frac{{k({x_2}-1)}}{{{x_2}-2}}(x-2)$,
聯(lián)立得$x=\frac{{2(2{x_1}{x_2}-3{x_1}+{x_2})}}{{{x_1}+3{x_2}-4}}=\frac{{2(5{x_1}+5{x_2}-8-3{x_1}+{x_2})}}{{{x_1}+3{x_2}-4}}=4$,
或$\begin{array}{l}x=\frac{{2(2{x_1}{x_2}-3{x_1}+{x_2})}}{{{x_1}+3{x_2}-4}}=\frac{{2[{2{x_1}{x_2}-3({x_1}+{x_2})+4{x_2}}]}}{{({x_1}+{x_2})+2{x_2}-4}}=\frac{{2[{\frac{{8({k^2}-3)}}{{3+4{k^2}}}-\frac{{24{k^2}}}{{3+4{k^2}}}+4{x_2}}]}}{{\frac{{8{k^2}}}{{3+4{k^2}}}+2{x_2}-4}}\end{array}$
=$\frac{{4(-\frac{{4{k^2}+6}}{{3+4{k^2}}}+{x_2})}}{{-\frac{{4{k^2}+6}}{{3+4{k^2}}}+{x_2}}}=4$,
所以直線AM與直線BN的交點在定直線x=4上.
點評 本題考查橢圓的方程的求法,注意運用待定系數(shù)法,考查兩直線的交點在定直線上的求法,注意運用直線方程和橢圓方程聯(lián)立.運用韋達定理,以及聯(lián)立直線方程求交點,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等腰直角三角形 | B. | 直角三角形 | ||
C. | 等腰三角形 | D. | 等腰或直角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com