分析 (1)利用數(shù)列的前n項和與第n項的關系,得到關于數(shù)列的遞推關系式,即可求得S1,S2,S3,S4.
(2)用數(shù)學歸納法證明數(shù)列問題時分為兩個步驟,第一步,先證明當n=1時,結論顯然成立,第二步,先假設當n=k+1時,有Sk=$\frac{k}{2k+1}$,利用此假設證明當n=k+1時,結論也成立即可
解答 解:(1)S1=a1=$\frac{1}{3}$,
S2=(2×4-2)(S2-S1),∴S2=$\frac{2}{5}$,
S3=(2×9-3)(S3-S2),∴S3=$\frac{3}{7}$,
S4=(2×16-4)(S4-S3),∴S4=$\frac{4}{9}$
(2)由(1)的計算可猜想Sn=$\frac{n}{2n+1}$,
下面用數(shù)學歸納法證
①當n=1時,結論顯然成立.
②假設當n=k時結論成立,即Sk=$\frac{k}{2k+1}$,
則當n=k+1時,Sk+1=[2×(k+1)2-(k+1)](Sk+1-Sk),
∴(2k2+3k)Sk+1=k(k+1),
∴Sk+1=$\frac{k+1}{2k+3}$=$\frac{k+1}{2(k+1)+1}$,
故當n=k+1時結論也成立.
由①、②可知,對于任意的n∈N*,都有Sn=$\frac{n}{2n+1}$.
點評 本題主要考查數(shù)列遞推式、數(shù)學歸納法,第(1)問要注意遞推公式的靈活運用,第(2)問要注意數(shù)學歸納法的證明技巧.數(shù)學歸納法的基本形式設P(n)是關于自然數(shù)n的命題,若1°P(n0)成立2°假設P(k)成立(k≥n0),可以推出P(k+1)成立,則P(n)對一切大于等于n0的自然數(shù)n都成立.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a,b,c中至多有一個偶數(shù) | B. | a,b,c中一個偶數(shù)都沒有 | ||
C. | a,b,c至多有一個奇數(shù) | D. | a,b,c都是偶數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{1}{2}$個單位長度 | B. | 向右平移$\frac{1}{2}$個單位長度 | ||
C. | 向左平移$\frac{π}{6}$個單位長度 | D. | 向右平移$\frac{π}{6}$個單位長度 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{8}$個單位 | B. | 向右平移$\frac{π}{8}$個單位 | ||
C. | 向左平移$\frac{π}{4}$個單 | D. | 向右平移$\frac{π}{4}$個單位 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com