分析 運(yùn)用分析法證明,可在不等式的兩邊乘以$\sqrt{xy}$,作差,因式分解,討論x,y的大小,即可得證.
解答 證明:因?yàn)閤,y皆為正數(shù),
所以原不等式等價(jià)于($\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}$)$\sqrt{xy}$≥($\sqrt{x}+\sqrt{y}$)$\sqrt{xy}$,
即x$\sqrt{x}$+y$\sqrt{y}$≥x$\sqrt{y}$+y$\sqrt{x}$,整理得($\sqrt{x}-\sqrt{y}$)(x-y)≥0.
當(dāng)x-y≥0時(shí),x≥y,則$\sqrt{x}$≥$\sqrt{y}$,$\sqrt{x}$-$\sqrt{y}$≥0,所以上式成立;
當(dāng)x-y≤0時(shí),x≤y,則$\sqrt{x}$≤$\sqrt{y}$,$\sqrt{x}$-$\sqrt{y}$≤0,上式也成立.
綜上知,原不等式成立.
點(diǎn)評(píng) 本題考查不等式的證明,注意運(yùn)用分析法證明,考查推理能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
第一排 | 明文字母 | A | B | C |
密碼數(shù)字 | 11 | 12 | 13 | |
第二排 | 明文字母 | E | F | G |
密碼數(shù)字 | 21 | 22 | 23 | |
第三排 | 明文字母 | M | N | P |
密碼數(shù)字 | 1 | 2 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直角三角形 | B. | 等腰三角形 | C. | 等腰直角三角形 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | Sk+$\frac{1}{2k+1}$ | B. | Sk+$\frac{1}{2k}$+$\frac{1}{2k+1}$ | ||
C. | Sk+$\frac{1}{2k}$+$\frac{1}{2k+1}$-$\frac{1}{k+2}$ | D. | Sk-$\frac{1}{2k}$-$\frac{1}{2k+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com