A. | 1 | B. | -2 | C. | 4 | D. | 3 |
分析 函數(shù)f(x)=$\frac{{2}^{x}+a}{{2}^{x}-a}$為奇函數(shù),可得f(-x)+f(x)=0,代入化簡,即可求出a的值.
解答 解:∵函數(shù)f(x)=$\frac{{2}^{x}+a}{{2}^{x}-a}$為奇函數(shù),
∴f(-x)+f(x)=0,
即$\frac{{2}^{-x}+a}{{2}^{-x}-a}$+$\frac{{2}^{x}+a}{{2}^{x}-a}$=0,
化簡得(1+a•2x)(2x-a)+(1-a2x)(2x+a)=0;
故2•2x(1-a2)=0,
解得,a=1或a=-1;
∵a>0,∴a=1.
故選:A.
點評 本題考查函數(shù)奇偶性的定義,考查學生的計算能力,正確計算是關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | M={3,2},N={(3,2)} | B. | M={3,2},N={2,3} | ||
C. | M={(x,y)|y=-x+1},N={y|y=1-x} | D. | M={1,2},N={(2,1)} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{9}{4}$ | C. | $-\frac{4}{9}$ | D. | $-\frac{9}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com