本公司計(jì)劃在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過(guò)300min的廣告,廣告總費(fèi)用不超過(guò)9萬(wàn)元.甲、乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘.假定甲、乙兩個(gè)電視臺(tái)為該公司所做的每分鐘廣告,能給公司帶來(lái)的收益分別為0.3萬(wàn)元和0.2萬(wàn)元.問(wèn):該公司如何分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,才能使公司的收益最大?最大收益是多少萬(wàn)元?
設(shè)公司在甲電視臺(tái)和乙電視臺(tái)做廣告的時(shí)間分別為xmin和ymin,總收益為z元.
由題意得目標(biāo)函數(shù)為z=3 000x+2 000y.
二元一次不等式組等價(jià)于
作出二元一次不等式組所表示的可行域.
如圖,作直線l:3 000x+2 000y=0,即3x+2y=0,平移直線l,
從圖中可知,當(dāng)直線l過(guò)點(diǎn)M時(shí),目標(biāo)函數(shù)取得最大值.
聯(lián)立解得x=100,y=200.
所以點(diǎn)M的坐標(biāo)為(100,200).
所以zmax=3 000x+2 000y=700 000(元).
答:該公司在甲電視臺(tái)做100min廣告,在乙電視臺(tái)做200min廣告,公司的收益最大.最大收益是70萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)m,n∈N*,f(x)=(1+x)m+(1+x)n.
(1) 當(dāng)m=n=7時(shí),f(x)=a7x7+a6x6+…+a1x+a0,求a0+a2+a4+a6的值;
(2) 當(dāng)m=n時(shí),f(x)展開(kāi)式中x2的系數(shù)是20,求n的值;
(3) 若f(x)展開(kāi)式中x的系數(shù)是19,當(dāng)m,n變化時(shí),求x2系數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓C的焦距為2,兩準(zhǔn)線間的距離為10.設(shè)點(diǎn)A(5,0),過(guò)點(diǎn)A作直線l交橢圓C于P,Q兩點(diǎn),過(guò)點(diǎn)P作x軸的垂線交橢圓C于另一點(diǎn)S.
(1) 求橢圓C的方程;
(2) 求證:直線SQ過(guò)x軸上一定點(diǎn)B;
(3) 若過(guò)點(diǎn)A作直線與橢圓C只有一個(gè)公共點(diǎn)D,求過(guò)B,D兩點(diǎn)、且以AD為切線的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)向量a=(cosα,sinα),b=(cosβ,sinβ),其中0<α<β<π,若|2a+b|=|a-2b|,則β-α= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知向量a=(cosωx+sinωx,sinωx),b=(-cosωx+sinωx,2cosωx),設(shè)函數(shù)f(x)=a·b+λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱(chēng),其中ω,λ為常數(shù),且ω∈.
(1) 求函數(shù)f(x)的最小正周期;
(2) 若函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn),求函數(shù)f(x)在區(qū)間上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知一船以15 km/h的速度向東航行,船在A處看到一個(gè)燈塔M在北偏東60°方向,行駛4 h后,船到達(dá)B處,看到這個(gè)燈塔在北偏東15°方向,這時(shí)船與燈塔的距離為 km.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列{an}的前n項(xiàng)和為Sn,且點(diǎn)(n,Sn)在函數(shù)y=2x+1-2的圖象上.
(1) 求數(shù)列{an}的通項(xiàng)公式;
(2) 設(shè)數(shù)列{bn}滿(mǎn)足:b1=0,bn+1+bn=an(n∈N*),求數(shù)列{bn}的前n項(xiàng)和公式;
(3) 在第(2)問(wèn)的條件下,若對(duì)于任意的n∈N*,不等式bn<λbn+1恒成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com